Skip to main content Accessibility help
×
Home

Phase stability as a function of temperature in a refractory high-entropy alloy

  • Vishal Soni (a1), Bharat Gwalani (a1), Oleg N. Senkov (a2), Babu Viswanathan (a3), Talukder Alam (a1), Daniel B. Miracle (a4) and Rajarshi Banerjee (a1)...

Abstract

Refractory high-entropy alloys (RHEAs) have recently attracted much attention, primarily due to their mechanical properties at elevated temperatures. However, the equilibrium phase-stability of these alloy systems is not well established. The present investigation focuses on the phase stability of Al0.5NbTa0.8Ti1.5V0.2Zr RHEA at temperatures ranging from 600 to 1200 °C. The detailed phase characterization involves coupling of scanning electron microscopy, transmission electron microscopy, and atom probe tomography. The stable phases present at these temperatures are (i) 1200 °C—body-centered cubic (BCC) matrix with nano-B2 precipitates; (ii) 1000 °C and 800 °C—a BCC matrix phase with Al–Zr rich hexagonal closed packed intermetallic precipitates and, (iii) 600 °C—a BCC + B2 microstructure, comprising a continuous BCC matrix with discrete B2 precipitates. These results highlight the substantial changes in phase stability as a function of temperature in RHEAs, and high-entropy alloys in general, and also the importance of accounting for these changes especially while designing alloys for high temperature applications.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: Raj.Banerjee@unt.edu

Footnotes

Hide All
b)

These authors contributed equally to this work.

c)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Footnotes

References

Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 5 (2004).
2.Jien-Wei, Y.: Recent progress in high entropy alloys. Ann. Chimie Sci. Matériaux 31, 633 (2006).
3.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
4.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 231 (2004).
5.Ranganathan, S.: Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 85, 1404 (2003).
6.Borkar, T., Gwalani, B., Choudhuri, D., Mikler, C.V., Yannetta, C.J., Chen, X., Ramanujan, R.V., Styles, M.J., Gibson, M.A., and Banerjee, R.: A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63 (2016).
7.Diao, H.Y., Feng, R., Dahmen, K.A., and Liaw, P.K.: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252 (2017).
8.Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509, 6043 (2011).
9.Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).
10.Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).
11.Senkov, O.N. and Woodward, C.F.: Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng., A 529, 311 (2011).
12.Feuerbacher, M., Lienig, T., and Thomas, C.: A single-phase bcc high-entropy alloy in the refractory Zr–Nb–Ti–V–Hf system. Scr. Mater. 152, 40 (2018).
13.Senkov, O.N., Senkova, S.V., Woodward, C., and Miracle, D.B.: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 61, 1545 (2013).
14.Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C.: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng., A 565, 51 (2013).
15.Senkov, O.N., Woodward, C., and Miracle, D.B.: Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM 66, 2030 (2014).
16.Senkov, O.N., Senkova, S.V., and Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).
17.Senkov, O.N., Jensen, J.K., Pilchak, A.L., Miracle, D.B., and Fraser, H.L.: Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater. Des. 139, 498 (2018).
18.Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153 (2015).
19.Stepanov, N.D., Yurchenko, N.Y., Sokolovsky, V.S., Tikhonovsky, M.A., and Salishchev, G.A.: An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. Mater. Lett. 161, 136139 (2015).
20.Gorsse, S., Miracle, D.B., and Senkov, O.N.: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177187 (2017).
21.Senkov, O.N., Isheim, D., Seidman, D.N., and Pilchak, A.L.: Development of a Refractory High Entropy Superalloy (Postprint), AFRL Materials and Manufacturing Directorate Wright Patterson Air Force Base United States, 2016.
22.Duhl, D.N., Tien, J.K., and Caulfield, T.: Superalloys, Supercomposites and Superceramics (AcademicPress, New York, 1989).
23.Han, Z.D., Chen, N., Zhao, S.F., Fan, L.W., Yang, G.N., Shao, Y., and Yao, K.F.: Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 84, 153157 (2017).
24.Han, Z.D., Luan, H.W., Liu, X., Chen, N., Li, X.Y., Shao, Y., and Yao, K.F.: Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng., A 712, 380385 (2018).
25.Wang, S.P. and Xu, J.: (TiZrNbTa)–Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening. Intermetallics 95, 5972 (2018).
26.Gwalani, B., Soni, V., Lee, M., Mantri, S.A., Ren, Y., and Banerjee, R.: Optimizing the coupled effects of Hall–Petch and precipitation strengthening in Al0.3CoCrFeNi high entropy alloy. Mater. Des. 121, 254260 (2017).
27.Gwalani, B., Soni, V., Choudhuri, D., Lee, M., Hwang, J.Y., Nam, S.J., Ryu, H., Hong, S.H., and Banerjee, R.: Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys-Al0.3CoFeCrNi and Al0.3CuFeCrNi2. Scr. Mater. 123, 130 (2016).
28.Choudhuri, D., Gwalani, B., Gorsse, S., Mikler, C.V., Ramanujan, R.V., Gibson, M.A., and Banerjee, R.: Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys. Scr. Mater. 127, 186 (2017).
29.Yao, J.Q., Liu, X.W., Gao, N., Jiang, Q.H., Li, N., Liu, G., Zhang, W.B., and Fan, Z.T.: Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy. Intermetallics 98, 79 (2018).
30.Stepanov, N.D., Yurchenko, N.Y., Zherebtsov, S.V., Tikhonovsky, M.A., and Salishchev, G.A.: Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 211, 87 (2018).
31.Wu, Y., Si, J., Lin, D., Wang, T., Wang, W.Y., Wang, Y., Liu, Z., and Hui, X.: Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys. Mater. Sci. Eng., A 724, 249 (2018).
32.Jensen, J.K.: Characterization of a high strength, refractory high entropy alloy, AlMo0.5NbTa0.5TiZr. Ph. D. dissertation, The Ohio State University, Columbus, Ohio, 2017.
33.Hellman, O.C., Vandenbroucke, J.A., Rüsing, J., Isheim, D., and Seidman, D.N.: Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6, 437 (2000).
34.Caron, P. and Khan, T.: Improvement of creep strength in a nickel-base single-crystal superalloy by heat treatment. Mater. Sci. Eng. 61, 173 (1983).
35.Soffa, W.A. and Laughlin, D.E.: Decomposition and ordering processes involving thermodynamically first-order order → disorder transformations. Acta Metall. 37, 3019 (1989).
36.Bendersky, L.A., Boettinger, W.J., Burton, B.P., Biancaniello, F.S., and Shoemaker, C.B.: The formation of ordered ω-related phases in alloys of composition Ti4Al3Nb. Acta Metall. Mater. 38, 931 (1990).
37.Hickman, B.S.: The formation of omega phase in titanium and zirconium alloys: A review. J. Mater. Sci. 4, 554 (1969).
38.Ng, H.P., Devaraj, A., Nag, S., Bettles, C.J., Gibson, M., Fraser, H.L., Muddle, B.C., and Banerjee, R.: Phase separation and formation of omega phase in the beta matrix of a Ti–V–Cu alloy. Acta Mater. 59, 2981 (2011).
39.De Fontaine, D., Paton, N.E., and Williams, J.C.: The omega phase transformation in titanium alloys as an example of displacement controlled reactions. Acta Metall. 19, 1153 (1971).

Keywords

Type Description Title
WORD
Supplementary materials

Soni et al. supplementary material
Soni et al. supplementary material 1

 Word (893 KB)
893 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed