Skip to main content Accessibility help
×
Home

Phase separation in gel-derived materials, separation and crystallization of SnO2 within an amorphous SiO2 matrix

  • R. Dal Maschio (a1), S. Dirè (a1), G. Carturan (a1), S. Enzo (a2) and L. Battezzati (a3)...

Abstract

On heating a gel of composition 33.5SnO2−66.5SiO2 (wt. %) up to 1050 °C, SnO2 crystallization occurred with different mechanisms according to thermal treatments. Thermal analysis, SAXS (Small Angle X-Ray Scattering), WAXS (Wide Angle X-Ray Scattering), and TEM (Transmission Electron Microscopy) results obtained for samples treated at different temperatures demonstrated that the SnO2 load is divided into two moieties, one composed of isolated SnO2 particles suitable for primary crystallization yielding crystallites with 4.0 nm of average size; the other, being dissolved in SiO2, remains in the amorphous SiO2/SnO2 solid solution up to the highest temperature. The presence of these two phases accounts for SnO2 surface segregation at the expense of the SnO2 concentration of neighboring outer layers and the independence of apparent density on temperature.

Copyright

References

Hide All
1.Ulrich, D. R., J. Non-Cryst. Solids 100, 174 (1988).
2.Roy, R., Science 238, 1664 (1987).
3.Gottardi, V., Guglielmi, M., Tiziani, A., and Carturan, G., J. Non-Cryst. Solids 43, 105 (1981); H. Pentinghaus, J. Non-Cryst. Solids 63, 193 (1984); J. Livage, in Better Ceramics through Chemistry, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 32, Pittsburgh, PA, 1986), pp. 717–724.
4.Brinker, C. J. and Scherer, G., Sol-Gel Science (Academic Press, San Diego, CA, 1990), Chaps. 3, 5, and 11.
5.Brinker, C. J. and Scherer, G. W., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D. R. (Wiley-Interscience, New York, 1984), pp. 4359.
6.Pope, A. J. A. and Mackenzie, J. D., J. Non-Cryst. Solids 87, 185 (1986).
7.Livage, J., Henry, M., and Sanchez, C., Prog. Solid State Chem 18, 259 (1988).
8.Mehrotra, R. C. and Bohra, R., Metal Carboxylates (Academic Press, London, 1983); B. E. Yoldas, Am. Ceram. Soc. Bull. 54, 289 (1975); W. C. LaCourse, in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, edited by Lisa C. Klein (Noges, New Jersey, 1988), Chap. 7, pp. 140–161.
9. a. Prassas, M., Hench, L. L., Phalippou, J., and Zarzycki, J., J. Non-Gyst. Solids 48, 79 (1982); b. U. Brenna, G. Carturan, R. Ceccato, and M. Mozzon, 4th Infrastructure Conference, Tucson, AZ, 1989 (J. Wiley and Sons, New York, in press).
10.Vonk, C. G., J. Appl. Cryst. 9, 433 (1976).
11.Cocco, G., Schiffini, L., Strukul, G., and Carturan, G., J. Catal. 65, 348 (1980).
12.Enzo, S., Benedetti, A., and Polizzi, S., Z. Kristall. 170, 275 (1985).
13.Enzo, S., Fagherazzi, G., Benedetti, A., and Polizzi, S., J. Appl. Cryst. 21, 536 (1988).
14.Maschio, R. Dal, Dirè, S., Campostrini, R., Sorarù, G. D., and Carturan, G., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990).
15.Carturan, G., Gottardi, V., and Graziani, M., J. Non-Cryst. Solids 29, 41 (1978).
16.Kawaguchi, T., Hishikura, H., and lura, J., J. Non-Cryst. Solids 100, 220 (1988).
17.Tohge, N., Moore, G. S., and Mackenzie, J. D., J. Non-Cryst. Solids 63. 95 (1984).
18.Sakka, S., Kozuka, H., and Kim, S., in JJltrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (Wiley-Interscience, New York, 1988), pp. 159171.
19.Schmidt, H., J. Non-Cryst. Solids 100, 51 (1988).
20.Gallezot, P. and Bergeret, G., J. Catal. 72, 294 (1981).
21.Cocco, G., Enzo, S., Carturan, G., Orsini, P. Giordano, and Scardi, P., Mat. Chem. and Phys. 17, 541 (1987).
22.Osuka, T., Morikawa, H., Marumo, F., Tohji, K., Udagawa, Y., Yasumori, A., and Yamane, M., J. Non-Cryst. Solids 82, 154 (1986).
23.Smith, W. L., J. Appl. Cryst. 9, 139 (1976).
24.Young, R. A. and Sakthivel, A., J. Appl. Cryst. 21, 416 (1988).
25.Craievich, A., Santos, D. I. dos, Aegerter, M., Lours, T., and Zarzycki, J., J. Non-Cryst. Solids 100, 424 (1988).
26.Krol, D. M. and Van Lierop, J. G., J. Non-Cryst. Solids 63, 131 (1987); T. A. Gallo, C. J. Brinker, L. C. Klein, and G. W. Scherer, in Better Ceramics Through Chemistry, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Elsevier, North Holland, New York, 1984), pp. 85–90; C. J. Brinker, D. R. Tallant, E. P. Roth, and C. S. Ashley, J. Non-Cryst. Solids 82, 117 (1986); G. Mariotto, M. Montagna, G. Viliani, R. Campostrini, and G. Carturan, J. Phys. C: Solid State Phys. 21, L797 (1988).
27.Zarzycki, J., in JJltrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D. R. (Wiley- Interscience, New York, 1984), pp. 2742.
28.Salvado, I. M. Miranda, Serna, C. J., and Navarro, J. M. Fernandez, J. Non-Cryst. Solids 100, 330 (1988).

Related content

Powered by UNSILO

Phase separation in gel-derived materials, separation and crystallization of SnO2 within an amorphous SiO2 matrix

  • R. Dal Maschio (a1), S. Dirè (a1), G. Carturan (a1), S. Enzo (a2) and L. Battezzati (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.