Skip to main content Accessibility help

Phase Relations and Microwave Dielectric Properties of ZnNb2O6–TiO2

  • Dong-Wan Kim (a1), Deok-Yang Kim (a1) and Kug Sun Hong (a1)


The phase relations and microwave dielectric properties of (1−x)ZnNb2O6xTiO2 were investigated using x-ray powder diffraction and a network analyzer. Four phase regions were studied with increasing TiO2 mol% (x): columbite solid solution, ixiolite (ZnTiNb2O8) solid solution, mixture of ixiolite and rutile solid solutions, and rutile solid solution. It was suggested that the microwave properties depend on crystal structure rather than chemical composition. In the columbite solid solution region, an order–disorder transition was found with an increasing amount of TiO2, and the quality factor decreased sharply. ZnTiNb2O8 (x = 0.5), has a fully disordered structure and possesses a quality factor of 42,500, relative dielectric constant (εr) of 34.3, and temperature coefficient of resonant frequency (τf) of −52 ppm/°C. In the mixture region of ixiolite and rutile structure, τf was modified to around 0 ppm/°C.


Corresponding author

a)Address all correspondence to this author.


Hide All
1.Goldschmidt, H.J., Metallurgia 88, 241 (1960).
2.Weitzel, H., Z. Kristallogr. 144, 238 (1976).
3.Laves, F., Bayer, G., and Panagos, A., Schweiz. Mineral. Petrogr. Mitt. 43, 217 (1963).
4.Wenger, M. and Armbruster, T., N. Jb. Miner. Mh. H. 5, 224 (1993).
5.Baumgarte, A. and Blachnik, R., J. Alloys Compd. 215, 117 (1994).
6.Simons, P.Y. and Dachille, F., Acta. Crystallogr. 23, 334 (1967).
7.Magneli, A. and Marinder, B.O., Arkiv Kemi. 21, 407 (1963).
8.Nickel, E.H., Rowland, J.F., and McAdam, R.C., Am. Mineral. 48, 961 (1963).
9.Baumgarte, A. and Blacknik, R., Mat. Res. Bull. 27, 1287 (1992).
10.Lee, H.J., Hong, K.S., Kim, S.J., and Kim, I.T., Mat. Res. Bull. 32(7), 847 (1997).
11.Lee, H.J., Kim, I.T., and Hong, K.S., Jpn. J. Appl. Phys. 36, 1318 (1997).
12.Cohn, S.B., IEEE Trans. Microwave Theory & Tech. 16, 218 (1968).
13.Tarou, M., Electron. Ceram. 24, 38 (1993).
14.Hakki, B.W. and Coleman, P.D., IRE Trans. Microwave Theory & Technol. 8, 402 (1960).
15.Ginzton, E.L., in Microwave Measurements, edited by Schiff, L.I. (McGraw-Hill, New York, 1957).
16.Sagala, D.A., Nambu, S., and Echeverria, M., J. Am. Ceram. Soc. 75, 2573 (1992).
17.Guo, R., Bhalla, A.S., and Cross, L.E., J. Appl. Phys. 75, 4704 (1994).
18.Kim, I.T., Kim, Y.H., and Chung, S.J., Jpn. J. Appl. Phys. 34, 4096 (1995).
19.Cho, S.Y., Kim, I.T., and Hong, K.S., Jpn. J. Appl. Phys. 37, 593 (1998).
20.Wakino, K. and Tamura, H., Ceram. Trans. 8, 305 (1990).
21.Lee, H.J., Hong, K.S., and Kim, I.T., J. Mater. Res. 12, 1437 (1997).
22.Shannon, R.D., J. Appl. Phys. 73, 348 (1993).
23.Shannon, R.D., Husson, E., Repelin, Y., Dao, N.Q., and Brusset, H., Mat. Res. Bull. 12, 1129 (1977).
24.Grice, J.D., Ferguson, R.B., and Hawthorne, F.C., Can. Mineral. 14, 540 (1976).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed