Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T16:24:53.515Z Has data issue: false hasContentIssue false

Phase formation and crystal growth of Sr–Bi–Ta–O thin films grown by metalorganic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

H. Bachhofer
Affiliation:
Physics Department, University of Regensburg, 93040 Regensburg, Germany
H. von Philipsborn
Affiliation:
Physics Department, University of Regensburg, 93040 Regensburg, Germany
W. Hartner
Affiliation:
Infineon Technologies, Memory Products, 81730 Munich, Germany
C. Dehm
Affiliation:
Infineon Technologies, Memory Products, 81730 Munich, Germany
B. Jobst
Affiliation:
Siemens, Corporate Technology, 81730 Munich, Germany
A. Kiendl
Affiliation:
Siemens, Corporate Technology, 81730 Munich, Germany
H. Schroeder
Affiliation:
Institute of Solid State Research, FZJ Research Center Juelich, 52425 Juelich, Germany
R. Waser
Affiliation:
Institute of Solid State Research, FZJ Research Center Juelich, 52425 Juelich, Germany
Get access

Abstract

The crystallization process of SrxBiyTa2O5+x+3y/2 thin films grown by metalorganic chemical vapor deposition was investigated. Phase formation and crystal growth is greatly affected by the film composition and crystallization temperature. Phase diagrams for varying Sr or Bi contents were determined as a function of the crystallization temperature. The higher the Sr or Bi content in the film, the lower the phase transition temperature from the amorphous to the fluorite-type phase and from the fluorite-type to the Bi-layered Aurivillius phase. Low Sr and Bi contents support pyrochlore-type phase formation as a second phase. During annealing, excess Bi is not lost due to evaporation, but due to migration to the bottom electrode. Contrary to the fluorite-type phase, the Aurivillius phase is not able to incorporate the excess of Bi atoms. Decreasing grain size and pyrochlore-type phase formation entail decreasing remanent polarization.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Paz de Araujo, C.A., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374, 627 (1995).CrossRefGoogle Scholar
2Desu, S.B. and Vijay, D.P., Mater. Sci. Eng. B32, 75 (1995).CrossRefGoogle Scholar
3Dat, R., Lee, J.K., Auciello, O., and Kingon, A.I., Appl. Phys. Lett. 67, 572 (1995).CrossRefGoogle Scholar
4Desu, S.B., Vijay, D.P., Zhang, X., and He, B.P., Appl. Phys. Lett. 69, 1719 (1996).CrossRefGoogle Scholar
5Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).CrossRefGoogle Scholar
6Joshi, P.C., Ryu, S.O., Zhang, X., and Desu, S.B., Appl. Phys. Lett. 70, 1080 (1997).CrossRefGoogle Scholar
7Tsai, H.M., Lin, P., and Tseng, T.Y., Appl. Phys. Lett. 72, 1787 (1998).CrossRefGoogle Scholar
8Isobe, C., Ami, T., Hironaka, K., Watanabe, K., Sugiyama, M., Nagel, N., Katori, K., Ikeda, Y., Gutleben, C.D., Tanaka, M., Yamoto, H., and Yagi, H., Integrated Ferroelectrics 14, 95 (1997).CrossRefGoogle Scholar
9Hintermaier, F., Hendrix, B., Desrochers, D., Roeder, J., Dehm, C., Fritsch, E., Hünlein, W., Mazure, C., Nagel, N., Thwaite, P., Wendt, H., Baum, T.H., van Buskirk, P., Schumacher, M., Grossmann, M., Lohse, O., and Waser, R., 1998 Symp. VLSI Tech. Dig. Tech. Papers, p. 56.Google Scholar
10Mihara, T., Yoshimori, H., Watanabe, H., and Paz de Araujo, C.A., Jpn. J. Appl. Phys. 34, 5233 (1995).CrossRefGoogle Scholar
11Nagata, M., Vijay, D.P., Zhang, X., and Desu, S.B., Phys. Status Solidi (A) 157, 75 (1996).CrossRefGoogle Scholar
12Chen, T., Li, T.K., Zhang, X., and Desu, S.B., J. Mater. Res. 12, 1569 (1997).CrossRefGoogle Scholar
13Atsuki, T., Soyama, N., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 34, 5096 (1995).CrossRefGoogle Scholar
14Watanabe, H., Mihara, T., Yoshimori, H., and Paz de Araujo, C.A., Jpn. J. Appl. Phys. 34, 5240 (1995).CrossRefGoogle Scholar
15Hintermaier, F., Hendrix, B., Desrochers, D., Roeder, J., Baum, T., van Buskirk, P., Bolten, D., Grossmann, M., Lohse, O., Schumacher, M., Waser, R., Cerva, H., Dehm, C., Fritsch, E., Hoünlein, W., Mazure, C., Nagel, N., Thwaite, P., and Wendt, H., Integrated Ferroelectrics 21, 367 (1998).CrossRefGoogle Scholar
16Rodriguez, M.A., Boyle, T.J., Hernandez, B.A., Buchheit, C.D., and Eatough, M.O., J. Mater. Res. 11, 2282 (1996).CrossRefGoogle Scholar
17Ami, T., Hironaka, K., Isobe, C., Nagel, N., Sugiyama, M., Ikeda, Y., Watanabe, K., Machida, A., Miura, K., and Tanaka, M., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics II, edited by Desu, S.B., Beach, D.B., and Van Buskirk, P.C. (Mater. Res. Soc. Symp. Proc. 415, Pittsburgh, PA, 1996), p. 195.Google Scholar
18Osaka, T., Sakakibara, A., Seki, T., Ono, S., Koiwa, I., and Hashimoto, A., Jpn. J. Appl. Phys. 37, 597 (1998).CrossRefGoogle Scholar
19Zhang, Z.G., Liu, J.S., Wang, Y.N., Zhu, J.S., Liu, J.L., Su, D., and Shen, H.M., J. Appl. Phys. 85, 1746 (1999).CrossRefGoogle Scholar
20Shimakawa, Y., Kubo, Y., Nakagawa, Y., Kamiyama, T., Asano, H., and Izumi, F., Appl. Phys. Lett. 74, 1904 (1999)CrossRefGoogle Scholar
21Cheon, C.I. and Kim, J.S., Integrated Ferroelectrics 21, 229 (1998).CrossRefGoogle Scholar
22Rodriguez, M.A., Boyle, T.J., Buchheit, C.D., Tissot, R.G., Drewien, C.A., Hernandez, B.A., and Eatough, M.O., Integrated Ferroelectrics 14, 201 (1997).CrossRefGoogle Scholar
23Noguchi, T., Hase, T., and Miyasaka, Y., Jpn. J. Appl. Phys. 35, 4900 (1996).CrossRefGoogle Scholar
24Bachhofer, H., Hintermaier, F., Hauf, M., Spindler, O., Haneder, T., Dehm, C., von Philipsborn, H., and Waser, R., in Ferroelectric Thin Films VIII, edited by Schwartz, R.W., McIntyre, P.C., Miyasaka, Y., Summerfelt, S.R., and Wouters, D. (Mater. Res. Soc. Symp. Proc. 596, Warrendale, PA, 2000), p. 149.Google Scholar
25Shimakawa, Y., Kubo, Y., Streiffer, S.K., and Kingon, A.I., Jpn. J. Appl. Phys. 37, 5185 (1998).Google Scholar
26Newnham, R.E., Wolfe, R.W., and Dorrian, J.F., Mater. Res. Bull. 6, 1029 (1971).CrossRefGoogle Scholar
27Gutleben, C.D., Ikeda, Y., Isobe, C., Machida, A., Ami, T., Hironaka, K., and Morita, E., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics II, edited by Desu, S.B., Beach, D.B., and Van Buskirk, P.C. (Mater. Res. Soc. Symp. Proc. 415, Pittsburgh, PA, 1996), p. 201.Google Scholar