Skip to main content Accessibility help

PbO–SiO2-based glass doped with B2O3 and Na2O for coating of thermoelectric materials

  • Yatir Sadia (a1), Dana Ben-Ayoun (a1) and Yaniv Gelbstein (a1)


In the recent years, there has been high interest in renewable energy and highly efficient devices, promoted by the need to stop changing weather patterns. One of the most interesting methods for this is using thermoelectric materials, which are low cost and highly durable. However, the need for higher efficiency values and a higher resistance to oxidation leads to a technological problem in the field of coating. Due to its diverse properties, glass coating has been proposed as a solution to both sublimation of the thermoelectric materials and oxidation. Lead silicate glasses with 30% PbO were doped with 0–5% of Na2O and B2O3 to produce glasses with different properties. Differential scanning calorimetry and dilatometry measurements showed that the glass temperature can vary between 428 and 505 °C. The softening temperature is varied between 493 and 560 °C. Below Tg, the coefficient of thermal expansion is varied between 5.9 and 9 ppm/K and above Tg it varied between 17 and 58 ppm/K. This allows the tuning of the glass composition for each thermoelectric material, such as 0.5% B and 1% Na doped PbO -SiO2 glass for skutterudites and 1% doped B and 1% Na doped for Mg2Si, PbTe, and GeTe.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Rowe, D.M.: CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, Florida, 1995); pp. 2138.
2.Fan, S., Zhao, J., Guo, J., Yan, Q., Ma, J., and Hang, H.H.: p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 182104 (2010).
3.Yan, X., Poudel, B., Ma, Y., Liu, W.S., Joshi, G., Wang, H., Lan, Y., Wang, D., Chen, G., and Ren, Z.F.: Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett. 10, 33733378 (2010).
4.Gelbstein, Y., Davidow, J., Girard, S.N., Chung, D.Y., and Kanatzidis, M.: Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance. Adv. Energy Mater. 3, 815820 (2013).10.1002/aenm.201200970
5.Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., and Kanatzidis, M.G.: Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160 (2011).
6.Li, H., Tang, X., Zhang, Q., and Uher, C.: Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance. Appl. Phys. Lett. 93, 252109 (2008).
7.Liu, W., Tan, X., Yin, K., Liu, H., Tang, X., Shi, J., Zhang, Q., and Uher, C.: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).
8.Yang, J. and Caillat, T.: Thermoelectric materials for space and automotive power generation. MRS Bull. 31, 224229 (2006).
9.Li, C.C. and Kao, C.R.: Contacts for PbTe. In Advanced Thermoelectrics, Z. Ren, Y. Lan, and Q. Zhang, eds. (CRC Press, Boca Raton, Florida, 2017); pp. 635658.
10.Aswal, D.K., Basu, R., and Singh, A.: Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers. Manage. 114, 5067 (2016).
11.Liu, W., Jie, Q., Kim, H.S., and Ren, Z.: Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater. 87, 357376 (2015).
12.Wang, Z.L., Araki, T., Onda, T., and Chen, Z.C.: Effect of annealing on microstructure and thermoelectric properties of hot-extruded Bi–Sb–Te bulk materials. J. Mater. Sci. 53, 91179130 (2018).
13.Sadia, Y., Ohaion-Raz, T., Ben-Yehuda, O., Korngold, M., and Gelbstein, Y.: Criteria for extending the operation periods of thermoelectric converters based on IV–VI compounds. J. Solid State Chem. 241, 7985 (2016).
14.Zhang, L., Wang, W., Ren, B., and Guo, J.: The effect of adding nano-Bi2Te3 on properties of GeTe-based thermoelectric material. J. Electron. Mater. 42, 13031306 (2013).
15.Case, E.D.: Thermo-mechanical properties of thermoelectric materials. Thermoelectrics and its energy harvesting. In Modules, Systems, and Applications , D.M. Rowe, ed. (CRC Press, Boca Raton, Florida, 2012); p. 581.
16.Zhao, D., Tian, C., Liu, Y., Zhan, C., and Chen, L.: High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test. J. Alloys Compd. 509, 31663171 (2011).
17.Bux, S.K., Yeung, M.T., Toberer, E.S., Snyder, G.J., Kaner, R.B., and Fleurial, J.P.: Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J. Mater. Chem. 21, 1225912266 (2011).
18.Imai, M., Isoda, Y., and Udono, H.: Thermal expansion of semiconducting silicides β-FeSi2 and Mg2Si. Intermetallics 67, 7580 (2015).
19.Park, S.H., Kim, Y., and Yoo, C.Y.: Oxidation suppression characteristics of the YSZ coating on Mg2Si thermoelectric legs. Ceram. Int. 42, 1027910288 (2016).
20.Nieroda, P., Mars, K., Nieroda, J., Leszczyński, J., Król, M., Drożdż, E., Jeleń, P., Sitarz, M., and Koleżyński, A.: New high temperature amorphous protective coatings for Mg2Si thermoelectric material. Ceram. Int. 45, 1023010235 (2019).
21.Leszczyński, J., Nieroda, P., Nieroda, J., Zybała, R., Król, M., Łącz, A., Kaszyca, K., Mikuła, A., Schmidt, M., Sitarz, M., and Koleżyński, A.: Si–O–C amorphous coatings for high temperature protection of In0.4Co4Sb12 skutterudite for thermoelectric applications. J. Appl. Phys. 125, 215113 (2019).
22.Brostow, W., Datashvili, T., Hagg Lobland, H.E., Hilbig, T., Su, L., Vinado, C., and White, J.B.: Bismuth telluride-based thermoelectric materials: Coatings as protection against thermal cycling effects. J. Mater. Res. 27, 2930 (2012).
23.Brostow, W., Chang, J., Hagg Lobland, H.E., Perez, J.M., Shipley, S., Wahrmund, J., and White, J.B.: Rheological characterization of molten polymers containing ceramic nanopowders for use in thermoelectric devices. J. Nanosci. Nanotechnol. 15, 6604 (2015).
24.Brostow, W., Chen, I.K., and White, J.B.: Effects of polymeric coatings on service life of bismuth telluride-based thermoelectric materials. Sustain. Energy Fuels 1, 1376 (2017).
25.El-Genk, M.S., Saber, H.H., Caillat, T., and Sakamoto, J.: Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers. Manage. 47, 174200 (2006).
26.Kohara, S., Ohno, H., Takata, M., Usuki, T., Morita, H., Suzuya, K., Akola, J., and Pusztai, L.: Lead silicate glasses: Binary network-former glasses with large amounts of free volume. Phys. Rev. B 82, 134209 (2010).
27.Kacem, I.B., Gautron, L., Coillot, D., and Neuville, D.R.: Structure and properties of lead silicate glasses and melts. Chem. Geol. 461, 104114 (2017).
28.Bair, G.J.: II, The correlation of physical properties with atomic arrangement. J. Am. Ceram. Soc. 19, 347358 (1936).
29.Gee, I.A., Holland, D., and McConville, C.F.: Atomic environments in binary lead silicate and ternary alkali lead silicate glasses. Phys. Chem. Glasses 42, 339348 (2001).
30.Shelby, J.E.: Properties/structure relationships in lead silicate glasses. Glastech. Ber. 56, 10571062 (1983).
31.Greenough, R.D., Dentschuk, P., and Palmer, S.B.: Thermal expansion of lead silicate glasses. J. Mater. Sci. 16, 599603 (1981).
32.Geller, R.F., Creamer, A.S., and Bunting, E.N.: The system PbO–SiO2. J. Res. Natl. Bur. Stand 13, 237244 (1934).
33.Agote, I., Lagos, M.A., Tunbridge, J., Dixon, R., Reece, M., Ning, H., Gilchrist, R., Summers, R., Gelbstein, Y., Simpson, K., and Rouaud, C.: PM functional materials: Thermoelectric materials for automotive and marine applications. In European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings (The European Powder Metallurgy Association, Shropshire, UK., 2014); p. 1.
34.Zachariasen, W.H.: The atomic arrangement in glass. J. Am. Chem. Soc. 54, 38413851 (1932).
35.Sakka, S. and Mackenzie, J.D.: Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J. Non-Cryst. Solids 6, 145162 (1971).
36.Shelby, J.E.: Thermal expansion of mixed-alkali silicate glasses. J. Appl. Phys. 47, 44894496 (1976).
37.Jabra, R., Phalippou, J., and Zarzycki, J.: Synthesis and characterization of glasses from SiO2–B2O3 system obtained by hot-pressing of gels. Rev. Chim. Miner. 16, 245266 (1979).
38.Mocioiu, O.C., Zaharescu, M., Atkinson, I., Mocioiu, A.M., and Budrugeac, P.: Study of crystallization process of soda lead silicate glasses by thermal and spectroscopic methods. J. Therm. Anal. Calorim. 117, 131139 (2014).
39.Kobayashi, K.: DTA and MOS characteristics for PbO–B2O3–SiO2–GeO2 passivation glasses. J. Non-Cryst. Solids 109, 277279 (1989).
40.Khanna, A., Saini, A., Chen, B., González, F., and Ortiz, B.: Structural characterization of PbO–B2O3–SiO2 glasses. Glass Technol.: Eur. J. Glass Sci. Technol., Part B 55, 6573 (2014).
41.Sudarsan, V., Shrikhande, V.K., Kothiyal, G.P., and Kulshreshtha, S.K.: Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses. J. Phys.: Condens. Matter 14, 6553 (2002).
42.Tse, J.S., Wang, X.D., Jiang, D.T., Chen, N., and Jiang, J.Z.: High energy synchrotron X-ray diffraction study of lead oxide silicate glasses at the Canadian light source. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 626, 144146 (2011).
43.Bair, G.J.: The constitution of lead oxide-silica glasses: I, atomic arrangement. J. Am. Ceram. Soc. 19, 339347 (1936).
44.Karkhanavala, M.D. and Hummel, F.A.: Thermal expansion of some simple glasses. J. Am. Ceram. Soc. 35, 215219 (1952).
45.Fluegel, A.: Statistical regression modelling of glass properties—A tutorial. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 50, 2546 (2009).
46.Fluegel, A.: Thermal expansion calculation for silicate glasses at 210 °C based on a systematic analysis of global databases. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 51, 191201 (2010).
47.Angell, C.A.: Glass transition. In Encyclopedia of Materials: Science and Technology, Jürgen Buschow, K.H., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., and Veyssière, P., eds. (Elsevier, Amsterdam, Netherlands, 2004); pp. 111.
48.Fluegel, A.: Glass viscosity calculation based on a global statistical modelling approach. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 48, 1330 (2007).
49.Mazurin, O.V.: Glass properties: Compilation, evaluation, and prediction. J. Non-Cryst. Solids 351, 11031112 (2005).
50.Toby, B.H. and Von Dreele, R.B.: GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544549 (2013).


PbO–SiO2-based glass doped with B2O3 and Na2O for coating of thermoelectric materials

  • Yatir Sadia (a1), Dana Ben-Ayoun (a1) and Yaniv Gelbstein (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed