Skip to main content Accessibility help
×
Home

Pb2+-stabilized Ruddlesden–Popper (Sr1−xPbx)3Ti2O7 ceramics

  • Feng Gao (a1), Yunfei Chang (a2), Stephen F. Poterala (a3), Elizabeth Kupp (a3) and Gary L. Messing (a3)...

Abstract

Pb2+-doped (Sr1−xPbx)3Ti2O7 (SPT) ceramics were fabricated by a solid state reaction. The stability and lattice structure of Sr3Ti2O7 and Sr4Ti3O10 Ruddlesden–Popper (RP) phases were studied as a function of Pb2+ content and sintering atmosphere. X-ray diffraction indicates that SrO(SrTiO3)n RP phase formation is sensitive to the Sr:Ti ratio of the raw materials and is a complex circularly iterative process. When the PbO concentration is less than x = 0.03, pure Sr3Ti2O7 can be obtained. Sr4Ti3O10 was found to be the main phase in the SPT samples for x ≥ 0.075. Pb2+ stabilizes SrO(SrTiO3)n RP phases by substitution for Sr2+ which reduces the lattice stress of the RP phase. It was observed that SrO vaporization losses at high temperature can be compensated by the decomposition of the intermediate SrPbO3 phase at lower temperature.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pb2+-stabilized Ruddlesden–Popper (Sr1−xPbx)3Ti2O7 ceramics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pb2+-stabilized Ruddlesden–Popper (Sr1−xPbx)3Ti2O7 ceramics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pb2+-stabilized Ruddlesden–Popper (Sr1−xPbx)3Ti2O7 ceramics
      Available formats
      ×

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: messing@ems.psu.edu

References

Hide All
1.Mehta, R.J. and Ramanath, G.: High efficiency nanobulk thermoelectrics by bottom-up nanocrystal sculpting and assembly. Am. Ceram. Soc. Bull. 91(3), 28 (2012).
2.Misture, S. and Edwards, D.: High temperature oxide thermoelectrics. Am. Ceram. Soc. Bull. 91(3), 24 (2012).
3.Shakouri, A.: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399 (2011).
4.Kumar, S.R.S., Hedhili, M.N., Cha, D., Tritt, T.M., and Alshareef, H.N.: Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers. Chem. Mater. 26, 2726 (2014).
5.Abutaha, A.I., Kumar, S.R.S., Li, K., Dehkordi, A.M., Tritt, T.M., and Alshareef, H.N.: Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3. Chem. Mater. 27, 2165 (2015).
6.Koumoto, K., Wang, Y.F., Zhang, R., Kosuga, A., and Funahashi, R.: Oxide thermoelectric materials: A nanostructuring approach. Annu. Rev. Mater. Res. 40, 363 (2010).
7.Sun, R.R., Qin, X.Y., Li, L.L., Li, D., Zhang, J., Zhang, Y.S., and Tang, C.J.: The effects of elements doping on transport and thermoelectric properties of Sr3Ti2O7. J. Phys. Chem. Solids 75, 629 (2014).
8.Chernatynskiy, A., Grimes, R.W., Zurbuchen, M.A., Clarke, D.R., and Phillpot, S.R.: Crossover in thermal transport properties of natural, perovskite-structured superlattices. Appl. Phys. Lett. 95, 161906 (2009).
9.McCoy, M.A., Grimes, R.W., and Lee, W.E.: Phase stability and interfacial structures in the SrO–SrTiO3 system. Philos. Mag. A 75(3), 833 (1997).
10.Liu, Y.F., Lu, Y., Xu, M., and Zhoun, L.F.: Formation mechanisms of platelet Sr3Ti2O7 crystals synthesized by the molten salt synthesis method. J. Am. Ceram. Soc. 90(6), 1774 (2007).
11.Ishida, Y., Kakimoto, K.I., Ogawa, H., and Aki, M.: Transitional mechanism of particle Sr3Ti2O7 morphology in the molten salt synthesis. Ferroelectrics 381, 24 (2009).
12.Orloff, N.D., Tian, W., Fennie, C.J., Lee, C.H., Gu, D., Mateu, J., Xi, X.X., Rabe, K.M., Schlom, D.G., Takeuchi, I., and Booth, J.C.: Broadband dielectric spectroscopy of Ruddlesden–Popper Srn+1TinO3n+1 (n = 1, 2, 3… ) thin films. Appl. Phys. Lett. 94, 042908 (2009).
13.Jungbauer, M., Hühn, S., Egoavil, R., Tan, H., Verbeeck, J., Tendeloo, G.V., and Moshnyaga, V.: Atomic layer epitaxy of Ruddlesden–Popper SrO(SrTiO3)n films by means of metalorganic aerosol deposition. Appl. Phys. Lett. 105, 251603 (2014).
14.Emanuel, G., Alexandr, A.L., Marianne, R., Muller, J., Paufler, P., and Meyer, D.C.: Oriented growth of Srn+1TinO3n+1 Ruddlesden–Popper phases in chemical solution deposited thin films. J. Solid State Chem. 179, 1864 (2006).
15.Wang, Y.F., Lee, K.H., Ohta, H., and Koumoto, K.: Thermoelectric properties of electron doped SrO(SrTiO3)n (n = 1, 2). Ceramics. J. Appl. Phys. 105, 103701 (2009).
16.Lee, K.H., Wang, Y.F., Kim, S.W., Ohta, H., and Koumoto, K.: Thermoelectric properties of Ruddlesden–Popper phase n-type semiconducting oxides: La-, Nd-, and Nb-doped Sr3Ti2O7. Int. J. Appl. Ceram. Technol. 4(4), 326 (2007).
17.Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).
18.Gorsse, S., Bellanger, P., Brechet, Y., Sellier, E., Umarji, A., Ail, U., and Decourt, R.: Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys. Acta Mater. 59, 7425 (2011).
19.Nien, C.H. and Lu, H.Y.: Crystallographic orientation relationships between SrTiO3 and Ruddlesden–Popper phases. J. Am. Ceram. Soc. 95(5), 1676 (2012).
20.Reshak, A.H.: Thermoelectric properties of Srn+1TinO3n+1 (n = 1, 2, 3, ∞) Ruddlesdene–Popper homologous series. Renewable Energy 76, 36 (2015).
21.Beznosikov, B.V. and Aleksandrov, K.S.: Perovskite-like crystals of the Ruddlesden–Popper series. Crystallogr. Rep. 45(5), 792 (2000).
22.Jacob, K.T. and Jayadevan, K.P.: System Sr–Pb–O: Phase equilibria and thermodynamics using solid-state cells with buffer electrodes. Chem. Mater. 12, 1779 (2000).
23.Klein, R., Cook, L.P., and Wong-Ng, W.: Enthalpies of formation of SrPbO3 and Sr2PbO4. J. Chem. Thermodyn. 34, 2083 (2002).
24.Ruddlesden, S.N. and Popper, P.: The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54 (1958).
25.Noguera, C.: Theoretical investigation of the Ruddlesden–Popper compounds Srn+1TinO3n+1 (n = 1–3). Philos. Mag. Lett. 80(3), 173 (2000).
26.Kamba, S., Samoukhina, P., Kadlec, F., Pokorny, J., Petzelt, J., Reaney, I.M., and Wise, P.L.: Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Ruddlesden–Popper homologous series. J. Eur. Ceram. Soc. 23, 2639 (2003).
27.Jacob, K.T. and Rajitha, G.: Thermodynamic properties of strontium titanates: Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, and SrTiO3. J. Chem. Thermodyn. 43, 51 (2011).
28.Mccarthy, G.J., White, W.B., and Roy, R.: Phase equilibria in the 1375°C isotherm of the system Sr–Ti–O. J. Am. Ceram. Soc. 52(9), 463 (1969).
29.Lide, D.R.: CRC Handbook of Chemistry and Physics, 86th ed. (CRC Press, Boca Raton, FL, 2005).

Keywords

Type Description Title
WORD
Supplementary materials

Gao supplementary material
Tables S1-S4 and Figures S1-S3

 Word (827 KB)
827 KB

Pb2+-stabilized Ruddlesden–Popper (Sr1−xPbx)3Ti2O7 ceramics

  • Feng Gao (a1), Yunfei Chang (a2), Stephen F. Poterala (a3), Elizabeth Kupp (a3) and Gary L. Messing (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed