Skip to main content Accessibility help

Palladium and gold nanoparticles on carbon supports as highly efficient catalysts for effective removal of trichloroethylene

  • Kavita Meduri (a1), Candice Stauffer (a2), Wen Qian (a3), Otto Zietz (a1), Andrew Barnum (a2), Graham O’Brien Johnson (a4), Dimin Fan (a4), Weixiao Ji (a5), Changwen Zhang (a5), Paul Tratnyek (a4) and Jun Jiao (a6)...


Palladium (Pd) and gold (Au) nanoparticles (NPs) hybridized on two types of carbon supports, graphene and granular activated carbon (GAC), were shown to be promising catalysts for the sustainable hydrodehalogenation of aqueous trichloroethylene (TCE). These catalysts are capable of degrading TCE more rapidly than commercial Pd-on-GAC catalysts. The catalysts were synthesized at room temperature without the use of any environmentally unfriendly chemicals. Pd was chosen for its catalytic potency to break down TCE, while Au acts as a strong promoter of the catalytic activity of Pd. The results indicate that both graphene and GAC are favorable supports for the NPs due to high surface-to-volume ratios, unique surface properties, and the prevention of NP aggregation. The properties of NP catalysts were characterized using electron microscopy and spectroscopy techniques. The TCE degradation results indicate that the GAC-supported catalysts have a higher rate of TCE removal than the commercial Pd-on-GAC catalyst, and the degradation rate is greatly increased when using graphene-supported samples.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

Present address: Oak Ridge Institute for Science and Education Fellow, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Arlington, Virginia 22201, USA.



Hide All
1.Chaplin, B.P., Reinhard, M., Schneider, W.F., Schüth, C., Shapley, J.R., Strathmann, T.J., and Werth, C.J.: Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ. Sci. Technol. 46, 3655 (2012).
2.Heck, K.N., Nutt, M.O., Alvarez, P., and Wong, M.S.: Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination. J. Catal. 267, 97 (2009).
3.Munakata, N. and Reinhard, M.: Palladium-catalyzed aqueous hydrodehalogenation in column reactors: Modeling of deactivation kinetics with sulfide and comparison of regenerants. Appl. Catal., B 75, 1 (2007).
4.Park, S.J., Bhargava, S., Bender, E.T., Chase, G.G., and Ramsier, R.D.: Palladium nanoparticles supported by alumina nanofibers synthesized by electrospinning. J. Mater. Res. 23, 1193 (2008).
5.Li, Y., Lu, D., Zhou, L., Ye, M., Xiong, X., Yang, K., Pan, Y., Chen, M., Wu, P., Li, T., Chen, Y., Wang, Z., and Xia, Q.: Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium. J. Mater. Res. 31, 3712 (2016).
6.Lyu, Z., Liu, B., Wang, R., and Tian, L.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).
7.Salomé, O., Soares, G.P., Órfão, J.J.M., and Pereira, M.F.R.: Nitrate reduction with hydrogen in the presence of physical mixtures with mono and bimetallic catalysts and ions in solution. Appl. Catal., B 102, 424 (2011).
8.Batista, J., Pintar, A., Gomilšek, J.P., Kodre, A., and Bornette, F.: On the structural characteristics of γ-supported Pd–Cu bimetallic catalysts. Appl. Catal., A 217, 55 (2001).
9.Pintar, A., Batista, J., and Muševič, I.: Palladium-copper and palladium-tin catalysts in the liquid phase nitrate hydrogenation in a batch-recycle reactor. Appl. Catal., B 52, 49 (2004).
10.Engelmann, M.D., Hutcheson, R., Henschied, K., Neal, R., and Cheng, I.F.: Simultaneous determination of total polychlorinated biphenyl and dichlorodiphenyltrichloroethane (DDT) by dechlorination with Fe/Pd and Mg/Pd bimetallic particles and flame ionization detection gas chromatography. Microchem. J. 74, 19 (2003).
11.Nutt, M.O., Hughes, J.B., and Wong, M.S.: Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ. Sci. Technol. 39, 1346 (2005).
12.Calvino-Casilda, V., López-Peinado, A.J., Durán-Valle, C.J., and Martín-Aranda, R.M.: Last decade of research on activated carbons as catalytic support in chemical processes. Catal. Rev. 52, 325 (2010).
13.Qiu, X.F., Xu, J.Z., Zhu, J.M., Zhu, J.J., Xu, S., and Chen, H.Y.: Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method. J. Mater. Res. 18, 1399 (2003).
14.Gertrude, G.: Hydrogenation of mono-and disaccharides to polyols. U.S. Patent No. 2868847A, 1959.
15.Díaz, E., Ordóñez, S., Bueres, R.F., Asedegbega-Nieto, E., and Sastre, H.: High-surface area graphites as supports for hydrodechlorination catalysts: Tuning support surface chemistry for an optimal performance. Appl. Catal., B 99, 181 (2010).
16.Ordóñez, S., Díaz, E., Bueres, R.F., Asedegbega-Nieto, E., and Sastre, H.: Carbon nanofibre-supported palladium catalysts as model hydrodechlorination catalysts. J. Catal. 272, 158 (2010).
17.Zhang, M., Bacik, D.B., Roberts, C.B., and Zhao, D.: Catalytic hydrodechlorination of trichloroethylene in water with supported CMC-stabilized palladium nanoparticles. Water Res. 47, 3706 (2013).
18.Schrage, A.: Preparation of carbon supported palladium catalysts. U.S. Patent No. 3736266A, 1973.
19.Keith, C.D. and Bair, D.L.: Process for producing palladium on carbon catalysts. U.S. Patent No. 3138560A, 1964.
20.Mozingo, R.: Palladium catalysts. Org. Synth. 26, 77 (1946).
21.Cookson, J.: The preparation of palladium nanoparticles. Platinum Met. Rev. 56, 83 (2012).
22.US EPA: Wastewater technology fact sheet: Granular activated carbon adsorption and regeneration (2000). Available at:
23.US EPA and EPA: Work breakdown structure-based cost models for drinking water treatment technologies. EPA 832-F-00–017, EPA 815, 2014.
24.Mcallister, M.J., Li, J., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., and Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396 (2007).
25.Zhang, Y., Tan, Y., Stormer, H.L., and Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005).
26.Scarpa, F., Adhikari, S., and Srikantha Phani, A.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20, 1 (2009).
27.Qian, W., Hao, R., Zhou, J., Eastman, M., Manhat, B.A., Sun, Q., Goforth, A.M., and Jiao, J.: Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon 52, 595 (2013).
28.Qian, W., Cottingham, S., and Jiao, J.: Hybridization of conductive few-layer graphene with well-dispersed Pd nanocrystals. Appl. Surf. Sci. 275, 342 (2013).
29.Edwards, J.K., Thomas, A., Carley, A.F., Herzing, A.A., Kiely, C.J., and Hutchings, G.J.: Au–Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. Green Chem. 10, 388 (2008).
30.Qian, W., Chen, Z., Cottingham, S., Merrill, W.A., Swartz, N.A., Goforth, A.M., Clare, T.L., and Jiao, J.: Surfactant-free hybridization of transition metal oxide nanoparticles with conductive graphene for high-performance supercapacitor. Green Chem. 14, 371 (2012).
31.Nutt, M.O., Heck, K.N., Alvarez, P., and Wong, M.S.: Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl. Catal., B 69, 115 (2006).
32.Ji, W., Zhang, C., Li, F., Li, P., Wang, P., Ren, M., and Yuan, M.: First-principles study of small Pd–Au alloy clusters on graphene. RSC Adv. 4, 55781 (2014).
33.Meduri, K., Barnum, A., Johnson, G.O.B., Tratnyek, P.G., and Jiao, J.: Characterization of palladium and gold nanoparticles on granular activated carbon as an efficient catalyst for hydrodechlorination of trichloroethylene. Microsc. Microanal. 22, 332 (2016).
34.Edwards, J., Landon, P., Carley, A.F., Herzing, A.A., Watanabe, M., Kiely, C.J., and Hutchings, G.J.: Nanocrystalline gold and gold-palladium as effective catalysts for selective oxidation. J. Mater. Res. 22, 831 (2007).
35.Lowry, G.V. and Reinhard, M.: Hydrodehalogenation of 1- to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas. Environ. Sci. Technol. 33, 1905 (1999).
36.Li, S., Fang, Y.L., Romanczuk, C.D., Jin, Z., Li, T., and Wong, M.S.: Establishing the trichloroethene dechlorination rates of palladium-based catalysts and iron-based reductants. Appl. Catal., B 125, 95 (2012).
37.Tierney, H.L., Baber, A.E., Kitchin, J.R., and Sykes, E.C.H.: Hydrogen dissociation and spillover on individual isolated palladium atoms. Phys. Rev. Lett. 103, 246102 (2009).
38.Baber, A.E., Tierney, H.L., and Sykes, E.C.H.: Atomic-scale geometry and electronic structure of catalytically important Pd/Au alloys. ACS Nano 4, 1637 (2010).
39.Li, J., Pu, M., Ma, C., Tian, Y., He, J., and Evans, D.G.: The effect of palladium clusters (Pdn, n = 2–8) on mechanisms of acetylene hydrogenation: A DFT study. J. Mol. Catal. A: Chem. 359, 14 (2012).


Palladium and gold nanoparticles on carbon supports as highly efficient catalysts for effective removal of trichloroethylene

  • Kavita Meduri (a1), Candice Stauffer (a2), Wen Qian (a3), Otto Zietz (a1), Andrew Barnum (a2), Graham O’Brien Johnson (a4), Dimin Fan (a4), Weixiao Ji (a5), Changwen Zhang (a5), Paul Tratnyek (a4) and Jun Jiao (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed