Skip to main content Accessibility help
×
Home

Oxidation of Ni-toughened nc-TiN/a-SiNx nanocomposite thin films

  • Sam Zhang (a1), Deen Sun (a1) and Xianting Zeng (a2)

Abstract

Oxidation behavior of Ni-toughened reactively sputtered composite thin films of nanocrystalline TiN and amorphous SiNx [denoted as nc-TiN/a-SiNx(Ni)] was explored to understand the oxidation mechanism. The films were deposited on silicon substrate using a magnetron sputtering technique. Oxidation was carried out from 450 °C up to 1000 °C. The nature of the oxidation was determined using x-ray photoelectron spectroscopy. The microstructure of the oxidized films was studied using grazing incidence x-ray diffraction. The topography was characterized using atomic force microscopy. It was determined that the oxidation of the nc-TiN/a-SiNx(Ni) thin film proceeds primarily through a diffusion process, in which nickel atoms diffuse outward and oxygen ions inward. The oxidation takes place by progressive replacement of nitrogen with diffused oxygen. Five regions were identified in the oxidized layer from surface into the film. For films doped with 2.1 at.% Ni, a threshold temperature of 850 °C was determined, below which, excellent oxidation resistance prevails but above which, oxidation takes place at exponential rate, accompanied by abrupt increase of surface roughness.

Copyright

Corresponding author

a)Address all correspondence to this author.e-mail: msyzhang@ntu.edu.sg This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

References

Hide All
1Cselle, T. and Barimani, A.: Today’s applications and future developments of coatings for drills and rotating tools. Surf. Coat. Technol. 76–77, 712 (1995).
2Veprek, S. and Reiprich, S.: A concept for the design of novel superhard coatings. Thin Solid Films 268, 64 (1995).
3Zhang, S., Sun, D., Fu, Y. and Du, H.: Recent advances of superhard nanocomposite coatings: a review. Surf. Coat. Technol. 167, 113 (2003).
4Zhang, S., Sun, D. and Fu, Y.: Superhard nanocomposite coatings. J. Mater. Sci. Technol. 18, 485 (2002).
5Gusev, A.I.: Effects of the nanocrystalline state in solids. Physics-Uspekhi. 41(1), 49 (1998).
6Cantor, B., Allen, C.M., Dunin-Burkowski, R., Green, M.H., Hutchinson, J.L., O’Reilly, K.A.Q., Petfor-Long, A.K., Schumacher, P., Sloan, J. and Warren, P.J.: Applications of nanocomposites. Scripta Mater. 44, 2055 (2001).
7Veprek, S., Niederhofer, A., Moto, K., Bolom, T., Mannling, H-D., Nesladek, P., Dollinger, G. and Bergmaier, A.: Composition, nanostructure and origin of ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposite with Hv = 80 to ≥ 105 GPa. Surf. Coat. Technol. 133–134, 152 (2000).
8Zhang, S., Sun, D., Fu, Y. and Du, H.: Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiN x thin films. Thin Solid Films 447–448, 462 (2004).
9Zhang, S., Sun, D., Fu, Y., Du, H. and Zhang, Q.: Effect of sputtering target power density on topography and residual stress during growth of nanocomposite nc-TiN/a-SiNx thin films. Diamond Relat. Mater. 13, 1777 (2004).
10Ruhle, M. and Evans, A.G.: High toughness ceramics and ceramic composites. Prog. Mater. Sci. 33, 85 (1989).
11Raddatz, O., Schneider, G.A., Mackens, W., Vob, H. and Claussen, N.: Bridging stresses and R-curves in ceramic/metal composites. J. Eur. Ceram. Soc. 20, 2261 (2000).
12Mataga, P.A.: Deformation of crack-bridging ductile reinforcements in toughened brittle materials. Acta Metal. 37, 3349 (1989).
13Morris, D.G. Strength and ductility of nanocrystalline materials: What we really understand? inScience of Metastable and Nanocrystalline Alloys: Structure, Properties and Modeling, edited by Dinesen, A.R., Eldrup, M., Jensen, D.J., Linderoth, S., Pedersen, T.B., Pryds, N.H., Pedersen, A.S., and Wert, J.A., (Proc. 22nd Riso Int. Symp. Mater. Sci., Roskilde, Denmark, 2001), p. 89.
14Mishra, R.S. and Mukherjee, A.K.: Processing of high hardness-high toughness alumina matrix nanocomposites. Mater. Sci. Eng. A 301, 97 (2001).
15Musil, J. and Zeman, P.: Structure and microhardness of magnetron sputtered ZrCu and ZrCuN films. Vacuum 52, 269 (1999).
16Musil, J., Zeman, P., Hruby, H. and Mayrhofer, P.H.: ZrN/Cu nanocomposite film- a novel superhard material. Surf. Coat. Technol. 120–121, 179 (1999).
17Musil, J., Karvankova, P. and Kasl, J.: Hard and superhard Zr–Ni–N nanocomposite films. Surf. Coat. Technol. 139, 101 (2001).
18Musil, J. and Regent, F.: Formation of nanocrystalline NiCr–N films by reactive dc magnetron sputtering. J. Vac. Sci. Technol. A 16, 3301 (1998).
19Misina, M., Musil, J. and Kadlec, S.: Composite TiN–Ni thin films deposited by reactive magnetron sputtering ion-plating. Surf. Coat. Technol. 110, 168 (1998).
20Musil, J. and Polakova, H.: Hard nanocomposite Zr–Y–N coatings, correlation between hardness and structure. Surf. Coat. Technol. 127, 99 (2000).
21Wang, T.C., Chen, R.Z. and Tuan, W.H.: Oxiation resistance of Ni-toughened Al2O3. J. Eur. Ceram. Soc. 23, 927 (2003).
22Irie, M., Ohara, H., Nakayama, A., Kitagawa, N. and Nomura, T.: Deposition of Ni-TiN nano-composite films by cathodic arc ion-plating. Nucl. Instrum. Meth. Phys. Res. B121, 133 (1997).
23Zhang, S., Sun, D., Fu, Y., Pei, Y.T. and De Hosson, J.Th.M.: Ni-toughened nc-TiN/a-SiNx nanocomposite thin films. Surf. Coat. Technol. (2005, in press).
24 Surface Ananlysis, Ihe Principal Techniques, edited by Vicerman, C.J. (John Wiley & Sons, Chichester, U.K., 1999), p. 61.
25Barr, T.L. and Seal, S.: Nature of the use of adventitious carbon as a binding energy standard. J. Vac. Sci. Technol. A13, 1239 (1995).
26Hu, F. and Chen, H.: XPS analysis of TiN films on Cu substrates after annealing in the controlled atmosphere. Thin Solid Films 355–356, 374 (1999).
27Taylor, J.A.: Further examination of the Si KLL auger line in silicon nitride thin films. Appl. Surf. Sci. 7, 168 (1981).
28Kuiry, S.C., Wannaparhun, S., Dahotre, N.B. and Seal, S.: In-situ formation of Ni-alumina nanocomposite during laser processing. Scripta Mater. 50, 1237 (2004).
29Saha, N.C. and Tompkins, H.G.: Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072 (1992).
30Jilek, M., Holubar, P., Veprek-Heijman, M.G.J., and Veprek, S.: Towards the industrialization of superhard nanocrystalline composites for high speed and dry machine, in Surface Engineering 2002-Synthesis, Characterization, and Application, edited by Kumar, A., Meng, W.J., Cheng, Y-T., Zabinski, J.S., Dolly, G.L., and Veprek, S. (Mater. Res. Soc. Symp. Proc. 750, Warrendale, PA, 2003), Y4.2, p. 393.
31Milosev, I., Strehblow, H-H. and Navinsek, B.: XPS in the study of high-temperature oxidation of CrN and TiN hard coatings. Surf. Coat. Technol. 74–75, 897 (1995).
32Fu, Y., Du, H. and Zhang, S.: Adhesion and interfacial structure of magnetron sputtered TiNi films on Si/SiO2 substrate. Thin Solid Films 444, 85 (2003).
33Esaka, F., Furuya, K., Shimada, H., Imamura, M., Matsubayashi, N., Sato, H., Nishijima, A., Kawana, A., Ichimura, H. and Kikuchi, T.: Comparison of surface oxidation of titanium nitride and chromium nitride films studied by x-ray absorption and photoelectron spectroscopy. J. Vac. Sci. Technol. A15, 2521 (1997).
34Moulder, J.F., Stickle, W.F., Sobol, P.E. and Bomben, K.D. Appendix B, Chemical states tables, in Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, edited by Chastian, J. (Physical Electronics, Eden Prairie, MN, 1995), p. 238.
35Milosev, I., Strehblow, H-H. and Navinsek, B.: Oxidation of ternary TiZrN hard coatings studied by XPS. Surf. Interface Anal. 26, 242 (1998).
36Ernsberger, C., Nickerson, J., Miller, A.E. and Moulder, J.: Angular resolved x-ray photoelectron spectroscopy study of reactively sputtered titanium nitride. J. Vac. Sci. Technol. A3(6), 2415 (1985).
37Man, H.C., Cu, Z.D. and Yang, X.J.: Anaylysis of laser gas nitrided titanium by x-ray photoelectron spectroscopy. Appl. Surf. Sci. 199, 293 (2002).
38Zhang, S., Qin, C.D. and Lim, L.C.: Solid solution extent of WC and TaC in Ti(C,N) as revealed by lattice parameter increase. Int. J. Refractory Met. Hard Mater. 12, 329 (1994).
39Gogotsi, Y.G., Porz, F. and Dransfield, G.: Oxidation behavior of monolithic TiN and TiN dispersed in ceramic matrices. Oxid. Met. 39(1/2), 69 (1993).
40Gogotsi, Y.G. and Porz, F.: The oxidation of particulate-reinforced Si3N4–TiN composites. Corros. Sci. 33, 627 (1992).
41Diserens, M., Patscheider, J. and Levy, F.: Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films. Surf. Coat. Technol. 120–121, 158 (1999).
42Deschaux-Beaume, F., Cutard, T., Frety, N. and Levaillant, C.: Oxidation of a silicon nitride-titanium nitride composite: Microstructural investigations and phenomenological modeling. J. Am. Ceram. Soc. 85, 1860 (2002).
43Desmaison, J., Lefort, P. and Billy, M.: Oxidation mechanism of titanium nitride in oxygen. Oxid. Met. 13, 505 (1979).
44Bellosi, A., Tampieri, A. and Liu, Y.Z.: Oxidation behaviour of electroconductive Si3N4–TiN composites. Mater. Sci. Eng. A 127, 115 (1990).
45Tampieri, A., Landi, E. and Bellosi, A.: The oxidation behavior of monolithic TiN ceramic. Br. Ceram. Trans. 90, 194 (1991).
46Ichimura, H. and Kawana, A.: High temperature oxidation of ion-plated TiN and TiAlN films. J. Mater. Res. 8, 1093 (1993).
47Ogbuji, L.U.J.T.: The SiO2–Si3N4 interface, Part I: Nature of the interface. J. Am. Ceram. Soc. 78, 1272 (1995).
48Ogbuji, L.U.J.T.: The SiO2–Si3N4 interface, Part II: O2 permeation and oxidation reaction. J. Am. Ceram. Soc. 78, 1279 (1995).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed