Skip to main content Accessibility help

Origin of the anomalous volume expansion in Al–Si alloys above liquidus

  • W. M. Wang (a1), X. F. Bian (a2), H. R. Wang (a2), Zhen Wang (a2), L. Zhang (a3), Z. G. Liu (a3) and J-M. Liu (a3)...


The sessile-drop method and high-temperature small-angle x-ray diffraction technique were used to characterize the density of liquid Al–Si alloys with Si content C = 0 to 22 wt%. A distinct abnormal volume expansion of the hyper-eutectic melts was identified just above the liquidus (within TLTk) during the heating sequence (h.s.), which is irreversible during the cooling sequence (c.s.). This phenomenon is explained by the segregation of Si atoms from the supersaturated “quasi-eutectic” structure and formation of silicon clusters in the superheated melt. In addition, a pre-peak in the x-ray diffraction spectrum of Al–14% Si melt was observed at 850 °C, which is associated with the silicon clusters. The pre-peak remains when the superheated melt is cooled down to the liquidus (670 °C); this result is in accord with the density measurements.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Seerveld, J., Van Till, S., Nguyen, A., Timmer, C., and Van Zytveld, J.B., J. Phys. F: Met. Phys. 15, L141 (1985).
2.Smith, P.M., Elmer, J.W., and Gallegos, G.F., Scripta Mater. 40, 937 (1999).
3.Sasaki., H., Tokizaki, E., Terashima, K., and Kimura, S., Jpn. J. Appl. Phys. 33, 3803 (1994).
4.Nakanishi, H., Nakazato, K., Abe, K., Maeda, S., and Terashima, K., J. Cryst. Growth 203, 75 (1999).
5.Doge, G.G., Naturforsch, Z. 21, 266 (1966).
6.Bashforth, F. and Adams, J.G., An Attempt to Test the Theories Of Capillary Actions (University Press, Cambridge, United Kingdom, 1883).
7.Mukai, K. and Yuan, Z., Mater. Trans. JIM 41, 323 (2000).
8.Kryshenko, G.G., Shpakov, V.I., Nikitin, V.I., and Torshilova, S.I., Izb. AN SSSR. Metalle. 4, 204 (1977).
9.Popel, P.S., Demina, E.L., Arhangelskii, E.L., and Baum, B.A., Teplofiz. Besokih. Temp. T25, 487 (1987).
10.Maze, C. and Burnet, G., Surf. Sci. 13, 450 (1969).
11.Iida, T. and Guthrie, R., The Physical Properties of Liquid Metals (Clarendon, Oxford, United Kingdom, 1993), p. 233.
12.Okajima, K., Matsubuchi, S., and Sakao, H., Tran. Japan Inst. Met. 26, 183 (1985).
13.Waseda, Y., Shinoda, K., Sugiyama, K., Takeda, S., Terashima, K., and Toguri, J.M., Jpn. J. Appl. Phys. 34, 4124 (1995).
14.Cahn, W.Nature 323, 668 (1986).
15.Jin, Z.H, Sheng, H.W., and Lu, K., Phys. Rev. B 60, 141 (1999).
16.Gabathuler, J., Steeb, S., and Lamparter, P., Z. Naturforsch 34a, 1305 (1979).
17.Krishnan, S. and Price, D.L., J. Phys: Condens. Matter 12, R145 (2000).
18.Bletry, J., Naturforsh, Z. 33a, 327 (1978).
19.Saboungi, M., Marr, J., and Blander, M., J. Chem. Phys. 68, 1375 (1978).
20.Okajima, K., Matsubuchi, S., and Sakao, H., Trans. JIM. 26, 183 (1985).
21.Okajima, K. and Sakao, H., Trans. JIM. 22, 347 (1981).
22.Waseda, Y., The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).
23.Barnes, A.C., Hamilton, M.A., Beck, U., and Fischer, H.E., J. Phys.: Condens. Matter 12, 7311 (2000).
24.Hsieh, H.Y., Toby, B.H., Egami, T., He, Y., and Poon, S.J., J. Mater. Res. 5, 2807 (1990).
25.Cervinka, L., J. Non-Cryst. Solids 232–234, 1 (1998).
26.Ansell, S., Krishna, S., Felten, J.J., and Price, D.L., J Phys. Condens. Matter 10, L73 (1998).
27.Price, D.L., Moss, S.C., Reijers, R., Saboungi, M., and Susman, S., J. Phys. C: Solid State Phys. 21, L1069 (1988).
28.Wang, W.M., Bian, X.F., Qin, J. Y., and Syliusarenko, S.I., Metall. Mater. Trans. A 31, 2163 (2000).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed