Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T20:48:48.568Z Has data issue: false hasContentIssue false

Oriented growth of single NaCl (100) crystal induced by Langmuir–Blodgett film

Published online by Cambridge University Press:  24 January 2011

Wei Ren
Affiliation:
Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China
Yinli Li
Affiliation:
Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China
Menglin Chen
Affiliation:
Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark
Bo Liu*
Affiliation:
Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China
Xi Li
Affiliation:
Department of Environmental Science & Engineering, Fudan University, Shanghai, People’s Republic of China
Mingdong Dong*
Affiliation:
Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark
*
a)Address all correspondence to these authors. e-mail: boliu@henu.edu.cn
Get access

Abstract

Molecular films have been extensively used for crystal growth. The Langmuir–Blodgett (LB) technique allows the oriented molecules film to be produced in a controllable manner. By controlling the LB film surface pressure and tuning quenching temperature of the supersaturated solution, single NaCl (100) crystal planes are successfully produced under the surface pressure of 30 mN/m with quenching temperature 5 °C of the NaCl supersaturated solution. The mechanism of single NaCl (100) crystal growth can be further explained based on the best matching between NaCl (100) crystal plane distance and the lattice parameter of LB film among all other crystal planes.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cooper, S.J., Sessions, R.B., and Lubetkins, S.D.: A new mechanism for nucleation beneath monolayer films? J. Am. Chem. Soc. 120, 2090 (1998).CrossRefGoogle Scholar
2.Mann, S., Heywood, B.R., Rajam, S., and Birchall, J.D.: Controlled crystallization of CaCO3 under stearic acid monolayers. Nature 334, 692 (1988).Google Scholar
3.Piana, S., Reyhani, M., and Gale, J.D.: Simulating micrometer-scale crystal growth from solution. Nature 438, 70 (2005).CrossRefGoogle Scholar
4.Pina, C.M., Becker, U., Risthaus, P., Bosbach, D., and Putnis, A.: Molecular-scale mechanisms of crystal growth in barite. Nature 395, 483 (1998).CrossRefGoogle Scholar
5.Wang, Y., Tang, Z., Tan, S., and Kotov, N.A.: Biological assembly of nanocircuit prototypes from protein-modified CdTe nanowires. Nano Lett. 5, 243 (2005).CrossRefGoogle ScholarPubMed
6.Lao, J.Y., Huang, J.Y., Wang, D.Z., and Ren, Z.F.: ZnO nanobridges and nanonails. Nano Lett. 3, 235 (2003).Google Scholar
7.Stein, R.S. and Norris, F.H.: The x-ray diffraction, birefringence, and infrared dichroism of stretched polyethylene. J. Polym. Sci., Polym. Phys. Ed. 21, 381 (1956).Google Scholar
8.Bunker, B.C., Rieke, P.C., Tarasevich, B.J., Campbell, A.A., Fryxell, G.E., Graff, G.L., Song, L., Liu, J., Virden, J.W., and Mcvay, G.L.: Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science 264, 48 (1994).Google Scholar
9.Cooper, S.J., Sessions, R.B., and Lubetkins, S.D.: Role of interfacial tension in nucleation beneath monolayer films. Langmuir 13, 7165 (1997).CrossRefGoogle Scholar
10.Mann, S.: Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365, 499 (1993).Google Scholar
11.Tang, R. and Tai, Z.: Get a certain crystal face directly: Self-organization of an inorganic ultrathin crystal film on an organic surface. Langmuir 13, 5204 (1997).Google Scholar
12.Backov, R., Lee, C.M., Khan, S.R., Mingotaud, C., Fanucci, G.E., and Talham, D.R.: Calcium oxalate monohydrate precipitation at phosphatidylglycerol Langmuir monolayers. Langmuir 16, 6013 (2000).CrossRefGoogle Scholar
13.Lu, L., Cui, H., Li, W., Zhang, H., and Xi, S.: Selective crystallization of BaF2 under a compressed Langmuir monolayer of behenic acid. Chem. Mater. 13, 325 (2001).CrossRefGoogle Scholar
14.Mann, S., Archibald, D.D., Didymus, J.M., Douglas, T., Heywood, B.R., Meldrum, F.C., and Reeves, N.J.: Crystallization at inorganic–organic interfaces: Biominerals and biomimetic synthesis. Science 261, 1286 (1993).Google Scholar
15.Sato, K., Kumagai, Y., Watari, K., and Tanakas, J.: Hierarchical texture of calcium carbonate crystals grown on a polymerized Langmuir−Blodgett film. Langmuir 20, 2979 (2004).CrossRefGoogle ScholarPubMed
16.Tang, R., Jiang, C., and Tai, Z.: Effect of different amphiphiles and their monolayers on the crystallization of CuSO4·5H2O. J. Chem. Soc., Dalton Trans. 1997, 4037 (1997).Google Scholar
17.Fouquey, C., Lehn, J.M., and Levelut, A.M.: Molecular recognition directed self-assembly of supramolecular liquid-crystalline polymers from complementary chiral components. Adv. Mater. 2, 254 (1990).CrossRefGoogle Scholar
18.Lu, F., Wang, H.S., Zhao, X.M., and Ozaki, Y.: Nucleation and growth of CuSO4·5H2O crystals on the liquid state stearic acid Langmuir–Blodgett film. J. Cryst. Growth 310, 4652 (2008).Google Scholar
19.Romualdo-Torres, G., Agricole, B., Mingotaud, C., Ravaine, S., and Delhaes, P.: Hybrid organic−inorganic Langmuir−Blodgett films starting from colloidal Prussian blue solution. Langmuir 19, 4688 (2003).CrossRefGoogle Scholar
20.Heywood, B.R., Rajam, S., and Mann, S.: Oriented crystallization of CaCO3 under compressed Langmuir monolayers. Part II. Morphology, structure and growth of immature crystals. J. Chem. Soc., Faraday Trans. 87, 735 (1991).CrossRefGoogle Scholar
21.Lu, F., Zhao, X., Zhou, G.D., Wang, H.S., and Ozaki, Y.: Control for oriented growth of large size KCl crystals by the competition between spontaneous and induced nucleation/growth on a Langmuir–Blodgett film. Chem. Phys. Lett. 458, 67 (2008).Google Scholar
22.Sawunyama, P., Jiang, L., Fujishima, A., and Hashimoto, K.: Photodecomposition of a Langmuir–Blodgett film of stearic acid on TiO2 film observed by in situ atomic force microscopy and FT-IR. J. Phys. Chem. B 101, 11000 (1997).CrossRefGoogle Scholar
23.Goto, M. and Asada, E.: The crystal structure of the B-form of stearic acid. Bull. Chem. Soc. Jpn. 51, 2456 (1978).CrossRefGoogle Scholar
24.Malta, V., Celotti, G., Zannetti, R., and Martelli, A.F.: Crystal structure of the C form of stearic acid. J. Chem. Soc. B 1971, 548 (1971).CrossRefGoogle Scholar
25.Nyvlt, J.: Kinetics of nucleation in solutions. J. Cryst. Growth 3, 377 (1968).CrossRefGoogle Scholar
26.Tsuei, C.C., Gupta, A., Trafas, G., and Mitzi, D.: Superconducting mercury-based cuprate films with a zero-resistance transition temperature of 124 Kelvin. Science 263, 1259 (1994).CrossRefGoogle ScholarPubMed
27.Yun, S.H., Karlsson, U.O., Jonsson, B.J., Rao, K.V., and Madsen, L.D.: Growth of a-axis-oriented HgBa2CaCu2O x thin films by rapid quenching. J. Mater. Res. 14, 3181 (1999).CrossRefGoogle Scholar
28.Lotz, B., Wittmann, J.C., and Lovinger, A.J.: Structure and morphology of poly(propylenes): A molecular analysis. Polymer (Guildf.) 37, 4979 (1996).CrossRefGoogle Scholar
29.Varga, J. and Karger-Kocsis, J.: Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J. Polym. Sci., Part B: Polym. Phys. 34, 2375 (1996).3.0.CO;2-N>CrossRefGoogle Scholar