Skip to main content Accessibility help

Orientation-specific amorphization and intercalated recrystallization at ion-irradiated SrTiO3/MgO interfaces

  • Jeffery A. Aguiar (a1), Mujin Zhuo (a2), Zhenxing Bi (a2), Engang Fu (a3), Yongqiang Wang (a3), Pratik P. Dholabhai (a3), Amit Misra (a4), Quanxi Jia (a4) and Blas P. Uberuaga (a5)...


Oxide composites are a class of materials with potential uses for nuclear, space, and coating applications. Exploiting their promise, however, requires a detailed understanding of their interfacial structure and chemistry. Using analytical microscopy, we have examined the radiation damage behavior at the interface of a model oxide bilayer, SrTiO3/MgO. The as-synthesized SrTiO3 thin film contained both (100) and (110) oriented domains. We found that after ion beam implantation the (110) domains amorphized at a lower radiation fluence than the (100) domains. Further, a persistent crystalline layer of SrTiO3 forms at the interface even as the rest of the SrTiO3 film amorphizes. We hypothesize that the enhanced amorphization susceptibility of the (110) domains is a consequence of how charged irradiation-induced defects at the interfaces interact with the charged planes of the (110) domains. These results demonstrate the complex relationship between interfacial structure and radiation damage evolution at oxide interfaces.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, H., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J.: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13(6), 14341484 (1998).
2.Ajayan, P.M.: Nanocomposite Science and Technology (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2004).
3.Xia, Z., Riester, L., Curtin, W.A., Li, H., Sheldon, B.W., Liang, J., Chang, B., and Xu, J.M.: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52(4), 931944 (2004).
4.Peigney, A., Laurent, C., Flahaut, E., and Rousset, A.: Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Int. 26(6), 677683 (2000).
5.Yamawaki, M., Yamaguchi, K., and Suzuki, A.: Impact of interfaces on nuclear materials. Ionics 7(4–6), 339345 (2001).
6.Voevodin, A.A. and Zabinski, J.S.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65(5), 741748 (2005).
7.Eberly, D., Ou, R., Karcz, A., and Skandan, G.: Self-healing nanocomposites for reusable composite cryotanks. NASA Tech Brief. MFS-32995–1, 2013.
8.Zhang, S., Sun, D., Fu, Y., and Du, H.: Recent advances of superhard nanocomposite coatings: A review. Surf. Coat. Technol. 167(2–3), 113119 (2003).
9.Birkholz, M., Albers, U., and Jung, T.: Nanocomposite layers of ceramic oxides and metals prepared by reactive gas-flow sputtering. Surf. Coat. Technol. 179(2–3), 279285 (2004).
10.Rubloff, G.W.: Microscopic properties and behavior of silicide interfaces. Surf. Sci. 132(1–3), 268314 (1983).
11.Chiang, Y-M., Lavik, E.B., Kosacki, I., Tuller, H.L., and Ying, J.Y.: Defect and transport properties of nanocrystalline CeO2−x. Appl. Phys. Lett. 69(2), 185187 (1996).
12.Misra, A., Demkowicz, M.J., Zhang, X., and Hoagland, R.G.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 62(59), 62 (2007).
13.Misra, A., Hoagland, R.G., and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84(10), 10211028 (2004).
14.Han, W.Z., Misra, A., Mara, N.A., Germann, T.C., Baldwin, J.K., Shimada, T., and Luo, S.N.: Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos. Mag. 91(32), 41724185 (2011).
15.Valdez, J.A., Usov, I.O., Won, J., Tang, M., Dickerson, R.M., Jarvinen, G.D., and Sickafus, K.E.: 10MeV Au ion irradiation effects in an MgO–HfO2 ceramic–ceramic (CERCER) composite. J. Nucl. Mater. 393(1), 126133 (2009).
16.Usov, I.O., Valdez, J.A., Won, J., and Devlin, D.J.: Ion irradiation temperature effect on HfO2/MgO multi-layer structures. J. Nucl. Mater. 420(1–3), 262267 (2012).
17.Shen, T.D., Feng, S., Tang, M., Valdez, J.A., Wang, Y.Q., and Sickafus, K.E.: Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90(26), 263115 (2007).
18.Meldrum, A., Boatner, L.A., and Ewing, R.C.: Nanocrystalline zirconia can be amorphized by ion irradiation. Phys. Rev. Lett. 88, 025503 (2001).
19.Oyoshi, K., Hishita, S., and Haneda, H.: Study of ion beam induced epitaxial crystallization of SrTiO3. J. Appl. Phys. 87(7), 34503456 (2000).
20.Nakao, S., Wang, Z., Jin, P., Miyagawa, Y., and Miyagawa, S.: Effect of high-energy Si+ ion irradiation on the crystallization behavior of amorphous strontium titanate films. Nucl. Instrum. Methods Phys. Res., Sect. B 191(1–4), 226229 (2002).
21.Zhang, Y., Lian, J., Wang, C.M., Jiang, W., Ewing, R.C., and Weber, W.J.: Ion-induced damage accumulation and electron-beam-enhanced recrystallization in SrTiO3. Phys. Rev. B 72, 094112 (2005).
22.Meldrum, A., Boatner, L.A., and Ewing, R.C.: Effects of ionizing and displacive irradiation on several perovskite-structure oxides. Nucl. Instrum. Meth. Phys. Res. 141, 347 (1998).
23.Zhuo, M.J., Uberuaga, B.P., Yan, L., Fu, E.G., Dickerson, R.M., Wang, Y.Q., Misra, A., Nastasi, M., and Jia, Q.X.: Radiation damage at the coherent anatase TiO2/SrTiO3 interface under Ne ion irradiation. J. Nucl. Mater. 429(1–3), 177184 (2012).
24.Bi, Z., Uberuaga, B.P., Vernon, L.J., Fu, E., Wang, Y., Li, N., Wang, H., Misra, A., and Jia, Q.X.: Radiation damage in heteroepitaxial BaTiO3 thin films on SrTiO3 under Ne ion irradiation. J. Appl. Phys. 113(2), 263115 (2013).
25.Uberuaga, B.P., Martinez, E., Bi, Z., Zhuo, M.J., Jia, Q.X., Nastasi, M.A., Misra, A., and Caro, A.: Defect distributions and transport in nanocomposites: A theoretical perspective. Mater. Res. Lett. 1(4), 193199 (2013).
26.Bi, Z., Uberuaga, B.P., Vernon, L.J., Aguiar, J.A., Fu, E.G., Zheng, S., Zhang, S., Wang, Y., Misra, A., and Jia, Q.: Role of the interface on radiation damage in the SrTiO3/LaAlO3 heterostructure under Ne2+ ion irradiation. J. Appl. Phys. 115(12), 124315 (2014).
27.Aguiar, J.A., Dholabhai, P.P., Bi, Z., Jia, Q., Fu, E.G., Wang, Y.Q., Aoki, T., Zhu, J., Misra, A., and Uberuaga, B.P.: Linking interfacial step structure and chemistry with locally enhanced radiation-induced amorphization at oxide heterointerfaces. Adv. Mater. Interfaces 1(4) (2014).
28.Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H., and Pennycook, S.J.: Direct sub-angstrom imaging of a crystal lattice. Science 305(5691), 1741 (2004).
29.Krivanek, O.L., Dellby, N., and Lupini, A.R.: Towards sub-Å electron beams. Ultramicroscopy 78(1–4), 111 (1999).
30.Muller, D.A., Nakagawa, N., Ohtomo, A., Grazul, J.L., and Hwang, H.Y.: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430(7000), 657661 (2004).
31.Ziegler, J.F., Bierscack, J.P., and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon Press, New York, NY, 1996).
32.Won, J., Vernon, L.J., Karakuscu, A., Dickerson, R.M., Cologna, M., Raj, R., Wang, Y.Q., Yoo, S.J., Lee, S-H., Misra, A., and Uberuaga, B.P.: The role of non-stoichiometric defects in radiation damage evolution of SrTiO3. J. Mater. Chem. A 1(32), 92359245 (2013).
33.Blaha, P., Schwarz, K., Sorantin, P., and Trickey, S.B.: Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59(2), 399415 (1990).
34.Aguiar, J.A., Ramasse, Q.M., Asta, M., and Browning, N.D.: Investigating the electronic structure of fluorite-structured oxide compounds: Comparison of experimental EELS with first principles calculations. J. Phys.: Condens. Matter 24(29), 295503 (2012).
35.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).
36.Holec, D., Costa, P., Cherns, P., and Humphreys, C.J.: A theoretical study of ELNES spectra of AlxGa1−xNAlxGa1−xN using Wien2k and Telnes programs. Computat. Mater. Sci. 44(1), 9196 (2008).
37.Sanchez, F., Aguiar, R., Trtik, V., Guerrero, C., Ferrater, C., and Varela, M.: Epitaxial growth of SrTiO3 (00h), (0hh), and (hhh) thin films on buffered Si(001). J. Mater. Res. 13(6), 14221425 (1998).
38.Tasker, P.W.: The stability of ionic crystal surfaces. J. Phys. C: Solid State Phys. 12, 4977 (1979).
39.Eglitis, R.I. and Vanderbilt, D.: Ab initio calculations of BaTiO3 and PbTiO3(001) and (011) surface structures. Phys. Rev. B 76, 155439 (2007).
40.Eng, L.M., Güntherodt, H-J., Schneider, G.A., Köpke, U., and Muñoz Saldaña, J.: Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium–titanate ceramics. Appl. Phys. Lett. 74, 233235 (1999).
41.Goniakowski, J., Finocchi, F., and Noguera, C.: Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71(1), 016501 (2008).
42.Zhu, Y., Song, C., Minor, A.M., and Wang, H.: Cs-corrected scanning transmission electron microscopy investigation of dislocation core configurations at a SrTiO3/MgO heterogeneous interface. Microsc. Microanal. 19(3), 706715 (2013).
43.Chiang, Y-M. and Touichi, T.: Grain-boundary chemistry of barium titanate and strontium titanate: I, high-temperature equilibrium space charge. J. Am. Ceram. Soc. 73(11), 32783285 (1990).
44.Han, W.Z., Demkowicz, M.J., Fu, E.G., Wang, Y.Q., and Misra, A.: Effect of grain boundary character on sink efficiency. Acta Mater. 60(18), 63416351 (2012).
45.Meldrum, A., Boatner, L.A., Weber, W.J., and Ewing, R.C.: Amorphization and recrystallization of the ABO3 oxides. J. Nucl. Mater. 300(2–3), 242254 (2002).
46.Usov, I.O., Arendt, P.N., Groves, J.R., Stan, L., and DePaula, R.F.: Crystallographic orientation dependence of radiation damage in Ar+ implanted YSZ and MgO single crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 240(3), 661665 (2005).
47.Uberuaga, B.P. and Bai, X-M.: Defects in rutile and anatase polymorphs of TiO2: Kinetics and thermodynamics near grain boundaries. J. Phys.: Condens. Matter 23(43), (2011).
48.Karakuscu, A., Cologna, M., Yarotski, D., Won, J., Francis, J.S.C., Raj, R., and Uberuaga, B.P.: Defect structure of flash-sintered strontium titanate. J. Am. Ceram. Soc. 95(8), 25312536 (2012).
49.Valone, S.M., Uberuaga, B.P., Liu, X-Y., Jeon, B., Chaudhry, A., and Grønbech-Jensen, N.: Cascade-driven mixing at metal oxide interfaces. Nucl. Instrum. Methods Phys. Res., Sect. B 268(19), 31143116 (2010). Radiation Effects in Insulators – Proceedings of the 15th International Conference on Radiation Effects in Insulators (REI), 15th International Conference on Radiation Effects in Insulators (REI).
50.Firstov, G.S., Van Humbeeck, J., and Koval, Y.N.: Comparison of high temperature shape memory behaviour for ZrCu-based, Ti–Ni–Zr and Ti–Ni–Hf alloys. Scr. Mater. 50(2), 243248 (2004). Viewpoint Set No. 33. Shape Memory Alloys.
51.Afanas’ev, V.V., Stesmans, A., Chen, F., Li, M., and Campbell, S.A.: Electrical conduction and band offsets in Si/HfxTi1xO2/metal structures. J. Appl. Phys. 95(12), 79367939 (2004).
52.Vepek, S.: The search for novel, superhard materials. J. Vacuum Sci. Technol. 17(5), 24012420 (1999).
53.Zhuo, M.J., Fu, E.G., Yan, L., Wang, Y.Q., Zhang, Y.Y., Dickerson, R.M., Uberuaga, B.P., Misra, A., Nastasi, M., and Jia, Q.X.: Interface-enhanced defect absorption between epitaxial anatase TiO2 film and single crystal SrTiO3. Scr. Mater. 65(9), 807810 (2011).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed