Skip to main content Accessibility help

Optimizing the interface bonding in Cu matrix composites by using functionalized carbon nanotubes and cold rolling

  • Guijun Liu (a1), Jingmei Tao (a1), Fengxian Li (a1), Rui Bao (a1), Yichun Liu (a1), Caiju Li (a1) and Jianhong Yi (a1)...


Nonuniform dispersion and weak interfacial bonding between carbon nanotubes (CNTs) and Cu matrix are two critical issues for achieving high strength and good ductility of CNT/Cu composites. Here, acid-treated CNTs precoated with Ni coatings were used to enhance the dispersion uniformity of CNTs and interfacial bonding between CNTs and Cu matrix in the CNT/Cu composites fabricated through spark plasma sintering and subsequently cold rolling. Scanning electron microscopy analysis revealed the homogeneous dispersion of Ni-coated CNTs (Ni-CNTs) in the composite compared with uncoated CNTs. Transmission electron microscope observation indicated that Cu2O nanoparticles were in situ formed at the interface in Ni-CNT/Cu composite, where CNTs were uncovered by Ni coatings. After rolling, the distribution of Ni-CNTs transformed into ribbons aligning along the rolling direction. The ultimate tensile strength (UTS) of 261 MPa was achieved in rolled 1 vol% Ni-CNT/Cu composite, which was 24.3% higher than that before rolling. The UTS of 2 vol% Ni-CNT/Cu composite obviously decreased, which could be attributed to the agglomeration of Ni-CNTs in the Cu matrix due to the increased volume content.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.lijima, S.: Helical microtubules of graphitic carbon. Nature 354, 7 (1991).
2.Mahanthesha, P., Srinivasa, C.K., and Mohankumar, G.C.: Processing and characterization of carbon nanotubes decorated with pure electroless nickel and their magnetic properties. Procedia Mater. Sci. 5, 883 (2014).
3.Zhou, W., Yamaguchi, T., Kikuchi, K., Nomura, N., and Kawasaki, A.: Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater. 125, 369 (2017).
4.Zhang, Z. and Chen, D.L.: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54, 1321 (2006).
5.Li, J.L., Xiong, Y.C., Wang, X.D., Yan, S.J., Yang, C., He, W.W., Chen, J.Z., Wang, S.Q., Zhang, X.Y., and Dai, S.L.: Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng., A 626, 400 (2015).
6.Bakshi, S.R., Lahiri, D., and Agarwal, A.: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55, 41 (2013).
7.Franklin, T. and Salmeron, M.: In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171 (2011).
8.Kim, K.T., Cha, S.I., Gemming, T., Eckert, J., and Hong, S.H.: The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites. Small 4, 1936 (2008).
9.Guo, B., Song, M., Yi, J., Ni, S., Shen, T., and Du, Y.: Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface. Mater. Des. 120, 56 (2017).
10.Cho, S., Kikuchi, K., and Kawasaki, A.: On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube–copper matrix composite. Acta Mater. 60, 726 (2012).
11.Wang, H., Zhang, Z.H., Zhang, H.M., Hu, Z.Y., Li, S.L., and Cheng, X.W.: Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes. Mater. Sci. Eng., A 696, 80 (2017).
12.Zhou, W., Bang, S., Kurita, H., Miyazaki, T., Fan, Y., and Kawasaki, A.: Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon 96, 919 (2016).
13.Hannulaa, P.M., Aromaaa, J., Wilsona, B.P., Janasb, D., Koziolb, O.F.K., and Lundströma, M.: Observations of copper deposition on functionalized carbon nanotube film. Electrochim. Acta 232, 495 (2017).
14.Lee, D., Sim, J., Kim, W., Moon, C., Cho, W., and Baik, S.: Enhanced electrical conductivity and hardness of silver–nickel composites by silver-coated multi-walled carbon nanotubes. Nanotechnology 26, 295705 (2015).
15.Wang, H., Zhang, Z.H., Hu, Z.Y., Wang, F.C., Li, S.L., Korznikov, E., Zhao, X.C., Liu, Y., Liu, Z.F., and Kang, Z.: Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes. Sci. Rep. 6, 26258 (2016).
16.Maqbool, A., Hussain, M.A., Khalid, F.A., Bakhsh, N., Hussain, A., and Kim, M.H.: Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites. Mater. Charact. 86, 39 (2013).
17.Khabazian, S. and Sanjabi, S.: The effect of multi-walled carbon nanotube pretreatments on the electrodeposition of Ni–MWCNTs coatings. Appl. Surf. Sci. 257, 5850 (2011).
18.Zhang, X.X., Wei, H.M., Li, A.B., Fu, Y.D., and Geng, L.: Effect of hot extrusion and heat treatment on CNTs-Al interfacial bond strength in hybrid aluminium composites. Compos. Interfaces 20, 231 (2013).
19.Xue, Z.W., Wang, L.D., Zhao, P.T., Xu, S.C., Qi, J.L., and Fe, W.D.: Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion. Mater. Des. 34, 298 (2012).
20.Kim, K.T., Cha, S.I., Hong, S.H., and Hong, S.H.: Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng., A 430, 27 (2006).
21.Liao, J.Z., Tan, M.J., and Sridhar, I.: Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater. Des. 31, S96 (2010).
22.Dresselhaus, M.S., Jorio, A., Souza Filho, A.G., and Saito, R.: Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans.: Math., Phys. Eng. Sci. 368, 5355 (2010).
23.Zhang, D. and Zhan, Z.: Strengthening effect of graphene derivatives in copper matrix composites. J. Alloys Compd. 654, 226 (2016).
24.Chu, K., Wang, F., Wang, X.H., Li, Y.B., Geng, Z.R., Huang, D.J., and Zhang, H.: Interface design of graphene/copper composites by matrix alloying with titanium. Mater. Des. 144, 290 (2018).
25.Chu, K., Wang, F., Li, Y.B., Wang, X.H., Huang, D.J., and Zhang, H.: Interface structure and strengthening behavior of graphene/CuCr composites. Carbon 133, 127 (2018).
26.Zhang, X., Shi, C., Liu, E., He, F., Ma, L., Li, Q., Li, J., Zhao, N., and He, C.: In situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility. Composites, Part A 103, 178 (2017).
27.Yang, M., Weng, L., Zhu, H., Zhang, F., Fan, T., and Zhang, D.: Leaf-like carbon nanotube-graphene nanoribbon hybrid reinforcements for enhanced load transfer in copper matrix composites. Scr. Mater. 138, 17 (2017).
28.Tsai, P.C. and Jeng, Y.R.: Enhanced mechanical properties and viscoelastic characterizations of nanonecklace-reinforced carbon nanotube/copper composite film. Appl. Surf. Sci. 326, 131 (2015).
29.Chen, X.F., Tao, J.M., Yi, J.H., Liu, Y.C., Bao, R., Li, C.J., Tan, S.T., and You, X.: Enhancing the strength of carbon nanotubes reinforced copper matrix composites by optimizing the interface structure and dispersion uniformity. Diamond Relat. Mater. 88, 74 (2018).
30.Guo, B., Zhang, X., Cen, X., Chen, B., Wang, X., Song, M., Ni, S., Yi, J., Shen, T., and Du, Y.: Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes. Carbon 139, 459 (2018).
31.Khurram, Y.Z., Munira, S., Zhang, D.L., Lin, J.X., Li, Y.C., and Wen, C.E.: Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Mater. Sci. Eng., A 688, 505 (2017).
32.Park, M., Kim, B.H., Kim, S., Han, D.S., Kim, G., and Lee, K.R.: Improved binding between copper and carbon nanotubes in a composite using oxygen-containing functional groups. Carbon 49, 811 (2011).
33.Kim, K.T., Eckert, J., Liu, G., Park, J.M., Lim, B.K., and Hong, S.H.: Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing. Scr. Mater. 64, 181 (2011).
34.Cheng, B.W., Bao, R., Yi, J.H., Li, C.J., Tao, J.M., Liu, Y.C., Tan, S.L., and You, X.: Interface optimization of CNT/Cu composite by forming TiC nanoprecipitation and low interface energy structure via spark plasma sintering. J. Alloys Compd. 722, 852 (2017).
35.Chen, X.F., Tao, J.M., Liu, Y.C., Bao, R., Li, F.X., Li, C.J., and Yi, J.H.: Interface interaction and synergistic strengthening behavior in pure copper matrix composites reinforced with functionalized carbon nanotube-graphene hybrids. Carbon 146, 736 (2019).
36.Zhang, D.D. and Zhan, Z.J.: Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties. J. Alloys Compd. 658, 663 (2016).
37.Saba, F., Sajjadi, S.A., Haddad-Sabzevar, M., and Zhang, F.: Formation mechanism of nano titanium carbide on multi-walled carbon nanotube and influence of the nanocarbides on the load-bearing contribution of the nanotubes inner-walls in aluminum-matrix composites. Carbon 115, 720 (2017).
38.Zhang, D.S., Mai, H.L., Huang, L., and Shi, L.Y.: Pyridine-thermal synthesis and high catalytic activity of CeO2/CuO/CNT nanocomposites. Appl. Surf. Sci. 256, 6795 (2010).
39.Ryu, H.J., Cha, S.I., and Hong, S.H.: Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites. J. Mater. Res. 18, 2851 (2011).
40.Chen, B., Wu, Z., Xu, J., and Xu, Y.: Calreticulin binds to Fas ligand and inhibits neuronal cell apoptosis induced by ischemia-reperfusion injury. BioMed Res. Int. 2015, 895284 (2015).
41.Chen, B., Kondoh, K., Imai, H., Umeda, J., and Takahashi, M.: Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions. Scr. Mater. 113, 158 (2016).
42.Duan, K., Li, L., Hu, Y.J., and Wang, X.L.: Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights. Phys. E 88, 259 (2017).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed