Skip to main content Accessibility help
×
Home

Optical properties of defects in nitride semiconductors

  • Ingo Tischer (a1), Matthias Hocker (a2), Benjamin Neuschl (a2), Manfred Madel (a3), Martin Feneberg (a4), Martin Schirra (a5), Manuel Frey (a6), Manuel Knab (a7), Pascal Maier (a7), Thomas Wunderer (a8), Robert A.R. Leute (a9), Junjun Wang (a10), Ferdinand Scholz (a10), Johannes Biskupek (a11), Jörg Bernhard (a11), Ute Kaiser (a11), Ulrich Simon (a12), Levin Dieterle (a13), Heiko Groiss (a14), Erich Müller (a15), Dagmar Gerthsen (a15) and Klaus Thonke (a16)...

Abstract

Group III nitrides are promising materials for light emitting diodes (LEDs). The occurrence of structural defects strongly affects the efficiency of these LEDs. We investigate the optical properties of basal plane stacking faults (BFSs), and the assignment of specific spectral features to distinct defect types by direct correlation of localized emission bands measured by cathodoluminescence in a scanning electron microscope with defects found in high resolution (scanning) transmission electron microscopy and electron beam induced current at identical sample spots. Thus, we are able to model the electronic structure of BSFs addressing I1, I2, and E type BSFs in GaN and AlGaN with low Al content. We find hints that BSFs in semipolar AlGaN layers cause local changes of the Al content, which strongly affects the usability of AlGaN as an electron blocking layer in nitride based LEDs.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: ingo.tischer@alumni.uni-ulm.de

References

Hide All
1.Schlotter, P., Schmidt, R., and Schneider, J.: Luminescence conversion of blue light emitting diode. Appl. Phys. A 64, 417 (1997).
2.Raukas, M., Kelso, J., Zheng, Y., Bergenek, K., Eisert, D., Linkov, A., and Jermann, F.: Ceramic Phosphors for Light Conversion in LEDs. ECS J. Solid State Sci. Technol. 2, R3168 (2013).
3.Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S.: High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Jpn. J. Appl. Phys. 34, L797 (1995).
4.Kim, M-H., Schubert, M.F., Dai, Q., Kim, J.K., Schubert, E.F., Piprek, J., and Park, Y.: Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007).
5.Shen, Y.C., Mueller, G.O., Watanabe, S., Gardner, N.F., Munkholm, A., and Krames, M.R.: Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91, 141101 (2007).
6.Piprek, J.: Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 207, 2217 (2010).
7.Iveland, J., Martinelli, L., Peretti, J., Speck, J.S., and Weisbuch, C.: Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop. Phys. Rev. Lett. 110, 177406 (2013).
8.Piprek, J. and Simon Li, Z.M.: Origin of InGaN light-emitting diode efficiency improvements using chirped AlGaN multi-quantum barriers. Appl. Phys. Lett. 102, 023510 (2013).
9.Binder, M., Nirschl, A., Zeisel, R., Hager, T., Lugauer, H-J., Sabathil, M., Bougeard, D., Wagner, J., and Galler, B.: Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence. Appl. Phys. Lett. 103, 071108 (2013).
10.Bertazzi, F., Goano, M., Zhou, X., Calciati, M., Ghione, G., Matsubara, M., and Bellotti, E.: Looking for Auger signatures in III-nitride light emitters: A full-band Monte Carlo perspective. Appl. Phys. Lett. 106, 061112 (2015).
11.Kozodoy, P., Ibbetson, J.P., Marchand, H., Fini, P.T., Keller, S., Speck, J.S., DenBaars, S.P., and Mishra, U.K.: Electrical characterization of GaN p-n junctions with and without threading dislocations. Appl. Phys. Lett. 73, 975 (1998).
12.Hsu, J.W.P., Manfra, M.J., Lang, D.V., Richter, S., Chu, S.N.G., Sergent, A.M., Kleiman, R.N., Pfeiffer, L.N., and Molnar, R.J.: Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Appl. Phys. Lett. 78, 1685 (2001).
13.Hsu, J.W.P., Manfra, M.J., Chu, S.N.G., Chen, C.H., Pfeiffer, L.N., and Molnar, R.J.: Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular-beam epitaxy. Appl. Phys. Lett. 78, 3980 (2001).
14.Miller, E.J., Dang, X.Z., and Yu, E.T.: Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors. J. Appl. Phys. 88, 5951 (2000).
15.McCarthy, L., Smorchkova, I., Xing, H., Fini, P., Keller, S., Speck, J., DenBaars, S.P., Rodwell, M.J.W., and Mishra, U.K.: Effect of threading dislocations on AlGaN/GaN heterojunction bipolar transistors. Appl. Phys. Lett. 78, 2235 (2001).
16.Ganguly, S., Verma, J., Hu, Z., Xing, H.G., and Jena, D.: Performance enhancement of InAlN/GaN HEMTs by KOH surface treatment. Appl. Phys. Express 7, 034102 (2014).
17.Hafiz, S., Zhang, F., Monavarian, M., Okur, S., Avrutin, V., Morkoç, H., and Özgür, U.: Estimation of carrier leakage in InGaN light emitting diodes from photocurrent measurements. In Proceedings of the International Society of Optical Engineering, Vol. 9003; SPIE, Bellingham, WA, 2014; p. 90031R.
18.Yokoyama, T., Kamimura, Y., Edagawa, K., and Yonenaga, I.: Local current conduction due to edge dislocations in deformed GaN studied by scanning spreading resistance microscopy. Eur. Phys. J.: Appl. Phys. 61, 10102 (2013).
19.Drum, C.M.: Intersecting faults on basal and prismatic planes in aluminium nitride. Philos. Mag. 11, 313 (1965).
20.Zakharov, D.N., Liliental-Weber, Z., Wagner, B., Reitmeier, Z.J., Preble, E.A., and Davis, R.F.: Structural TEM study of nonpolar a-plane gallium nitride grown on ($11\overline{2}0$) 4H-SiC by organometallic vapor phase epitaxy. Phys. Rev. B 71, 235334 (2005).
21.Ramírez-Flores, G., Navarro-Contreras, H., Lastras-Martínez, A., Powell, R.C., and Greene, J.E.: Temperature-dependent optical band gap of the metastable zinc-blende structure -GaN. Phys. Rev. B 50, 8433 (1994).
22.Monemar, B.: Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B 10, 676 (1974).
23.Rebane, Y.T., Shreter, Y.G., and Albrecht, M.: Stacking Faults as Quantum Wells for Excitons in Wurtzite GaN. Phys. Status Solidi A 164, 141 (1997).
24.Albrecht, M., Christiansen, S., Salviati, G., Zanotti-Fregonara, C., Rebane, Y.T., Shreter, Y.G., Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K.J., Bremser, M.D., Davis, R.F., and Strunk, H.P.: Luminescence Related to Stacking Faults in Heterepitaxially Grown Wurtzite GaN. MRS Online Proc. Libr. 468, 293 (1997).
25.Bandić, Z., McGill, T., and Ikonić, Z.: Electronic structure of GaN stacking faults. Phys. Rev. B 56, 3564 (1997).
26.Tischer, I., Feneberg, M., Schirra, M., Yacoub, H., Sauer, R., Thonke, K., Wunderer, T., Scholz, F., Dieterle, L., Müller, E., and Gerthsen, D.: I 2 basal plane stacking fault in GaN: Origin of the 3.32 eV luminescence band. Phys. Rev. B 83, 035314 (2011).
27.Sun, Y.J., Brandt, O., Jahn, U., Liu, T.Y., Trampert, A., Cronenberg, S., Dhar, S., and Ploog, K.H.: Impact of nucleation conditions on the structural and optical properties of M-plane ${G}a{N}(1\bar{1}00)$ grown on $\gamma-\mathrm{{L}i{A}l{O}}_2$. J. Appl. Phys. 92, 5714 (2002).
28.Skromme, B., Chen, L., Mikhov, M., Yamane, H., Aoki, M., and DiSalvo, F.: Properties of the 3.4 eV Luminescence Band in GaN and its Relation to Stacking Faults. Mater. Sci. Forum 457, 1613 (2004).
29.Liu, R., Bell, A., Ponce, F.A., Chen, C.Q., Yang, J.W., and Khan, M.A.: Luminescence from stacking faults in gallium nitride. Appl. Phys. Lett. 86, 021908 (2005).
30.Lähnemann, J., Brandt, O., Jahn, U., Pfüller, C., Roder, C., Dogan, P., Grosse, F., Belabbes, A., Bechstedt, F., Trampert, A., and Geelhaar, L.: Direct experimental determination of the spontaneous polarization of GaN. Phys. Rev. B 86, 081302 (2012).
31.Lähnemann, J., Jahn, U., Brandt, O., Flissikowski, T., Dogan, P., and Grahn, H.T.: Luminescence associated with stacking faults in GaN. J. Phys. D: Appl. Phys. 47, 423001 (2014).
32.Jacopin, G., Rigutti, L., Largeau, L., Fortuna, F., Furtmayr, F., Julien, F.H., Eickhoff, M., and Tchernycheva, M.: Optical properties of wurtzite/zinc-blende heterostructures in GaN nanowires. J. Appl. Phys. 110, 064313 (2011).
33.Piprek, J. and Nakamura, S.: Physics of high-power InGaN/GaN lasers. IEE Proc.: Optoelectron. 4, 145 (2002).
34.Van der Maelen Uría, J.F., García-Granda, S., and Menéndez-Velázquez, A.: Solving one-dimensional Schrödinger-like equations using a numerical matrix method. Am. J. Phys. 64, 327 (1996).
35.Scholz, F., Schwaiger, S., Däubler, J., Tischer, I., Thonke, K., Neugebauer, S., Metzner, S., Bertram, F., Christen, J., Lengner, H., Thalmair, J., and Zweck, J.: Semipolar GaInN quantum well structures on large area substrates. Phys. Status Solidi B 249, 464 (2012).
36.Darakchieva, V., Monemar, B., and Usui, A.: On the lattice parameters of GaN. Appl. Phys. Lett. 91, 031911 (2007).
37.Paszkowicz, W., Podsiadło, S., and Minikayev, R.: Rietveld-refinement study of aluminium and gallium nitrides. J. Alloys Compd. 382, 100 (2004). Proceedings of the European Materials Research Society Fall Meeting, Symposium B.
38.Vurgaftman, I. and Meyer, J.R.: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003).
39.Bernardini, F., Fiorentini, V., and Vanderbilt, D.: Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10024 (1997).
40.Feneberg, M., Lange, K., Lidig, C., Wieneke, M., Witte, H., Bläsing, J., Dadgar, A., Krost, A., and Goldhahn, R.: Anisotropic absorption and emission of bulk ($1\overline{1}00$) AlN. Appl. Phys. Lett. 103, 232104 (2013).
41.de Carvalho, L.C., Schleife, A., and Bechstedt, F.: Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN. Phys. Rev. B 84, 195105 (2011).
42.Im, J.S., Moritz, A., Steuber, F., Härle, V., Scholz, F., and Hangleiter, A.: Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN. Appl. Phys. Lett. 70, 631 (1997).
43.Azuhata, T., Sota, T., Suzuki, K., and Nakamura, S.: Polarized Raman spectra in GaN. J. Phys.: Condens. Matter 7, L129 (1995).
44.Feneberg, M., Romero, M.F., Röppischer, M., Cobet, C., Esser, N., Neuschl, B., Thonke, K., Bickermann, M., and Goldhahn, R.: Anisotropic absorption and emission of bulk ($1\overline{1}00$) AlN. Phys. Rev. B 87, 235209 (2013b).
45.Neuschl, B., Helbing, J., Knab, M., Lauer, H., Madel, M., Thonke, K., Meisch, T., Forghani, K., Scholz, F., and Feneberg, M.: Composition dependent valence band order in c-oriented wurtzite AlGaN layers. J. Appl. Phys. 116, 113506 (2014).
46.Feneberg, M., Röppischer, M., Cobet, C., Esser, N., Schörmann, J., Schupp, T., As, D.J., Hörich, F., Bläsing, J., Krost, A., and Goldhahn, R.: Optical properties of cubic GaN from 1 to 20 eV. Phys. Rev. B 85, 155207 (2012).
47.Röppischer, M., Goldhahn, R., Rossbach, G., Schley, P., Cobet, C., Esser, N., Schupp, T., Lischka, K., and As, D.J.: Dielectric function of zinc-blende AlN from 1 to 20 eV: Band gap and van Hove singularities. J. Appl. Phys. 106, 076104 (2009).
48.Bougrov, V., Levinshtein, M.E., Rumyantsev, S.L., and Zubrilov, A.: Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe; Levinshtein, M.E., Rumyantsev, S.L., and Shur, M. eds.; John Wiley & Sons, New York, 2001.
49.Suzuki, T., Yaguchi, H., Okumura, H., Ishida, Y., and Yoshida, S.: Optical Constants of Cubic GaN, AlN, and AlGaN Alloys. Jpn. J. Appl. Phys. 39, L497 (2000).
50.Wunderer, T., Hertkorn, J., Lipski, F., Brückner, P., Feneberg, M., Schirra, M., Thonke, K., Knoke, I., Meissner, E., Chuvilin, A., Kaiser, U., and Scholz, F.: Optimization of semipolar GaInN/GaN blue/green light emitting diode structures on {1-101} GaN side facets. Proc. SPIE 6894, 68940V (2008).
51.Knab, M., Hocker, M., Felser, T., Tischer, I., Wang, J., Scholz, F., and Thonke, K.: EBIC investigations on polar and semipolar InGaN LED structures. Phys. Status Solidi B (2015). doi: 10.1002/pssb.201552284.
52.Tischer, I., Feneberg, M., Schirra, M., Yacoub, H., Sauer, R., Thonke, K., Wunderer, T., Scholz, F., Dieterle, L., Müller, E., and Gerthsen, D.: Stacking fault-related luminescence features in semi-polar GaN. Phys. Status Solidi B 248, 611 (2011).
53.Tischer, I., Frey, M., Hocker, M., Jerg, L., Madel, M., Neuschl, B., Thonke, K., Leute, R., Scholz, F., Groiss, H., Müller, E., and Gerthsen, D.: Basal plane stacking faults in semipolar AlGaN: Hints to Al redistribution. Phys. Status Solidi B 251, 2321 (2014).
54.Narita, T., Honda, Y., Yamaguchi, M., and Sawaki, N.: The surface diffusion of Ga species on an AlGaN facet structure in low pressure MOVPE. Phys. Status Solidi C 4, 2506 (2007).
55.Vegard, L.: Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17 (1921).

Keywords

Related content

Powered by UNSILO

Optical properties of defects in nitride semiconductors

  • Ingo Tischer (a1), Matthias Hocker (a2), Benjamin Neuschl (a2), Manfred Madel (a3), Martin Feneberg (a4), Martin Schirra (a5), Manuel Frey (a6), Manuel Knab (a7), Pascal Maier (a7), Thomas Wunderer (a8), Robert A.R. Leute (a9), Junjun Wang (a10), Ferdinand Scholz (a10), Johannes Biskupek (a11), Jörg Bernhard (a11), Ute Kaiser (a11), Ulrich Simon (a12), Levin Dieterle (a13), Heiko Groiss (a14), Erich Müller (a15), Dagmar Gerthsen (a15) and Klaus Thonke (a16)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.