Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T11:47:16.069Z Has data issue: false hasContentIssue false

Optical properties and electrical characterization of p-type ZnO thin films prepared by thermally oxiding Zn3N2 thin films

Published online by Cambridge University Press:  31 January 2011

B. S. Li
Affiliation:
Key Laboratory of Excited State Processes, Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 130022, People's Republic of China
Y. C. Liu*
Affiliation:
Key Laboratory of Excited State Processes, Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 130022, People's Republic of China, and Institute of Theoretical Physics, Northeast Normal University, Changchun 130024, People's Republic of China
Z. Z. Zhi
Affiliation:
Institute of Theoretical Physics, Northeast Normal University, Changchun 130024, People's Republic of China
D. Z. Shen
Affiliation:
Key Laboratory of Excited State Processes, Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 130022, People's Republic of China
Y. M. Lu
Affiliation:
Key Laboratory of Excited State Processes, Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 130022, People's Republic of China
J. Y. Zhang
Affiliation:
Key Laboratory of Excited State Processes, Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 130022, People's Republic of China
X. W. Fan
Affiliation:
Key Laboratory of Excited State Processes, Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 130022, People's Republic of China
R. X. Mu
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, Tennessee 37208
Don O. Henderson
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, Tennessee 37208
*
a) Address all correspondence to this author. e-mail: ycliu@nenu.edu.cn
Get access

Abstract

In this paper, we report a simple method for preparing p-type ZnO thin films by thermal oxidization of Zn3N2 thin films. The Zn3N2 films were grown on fused silica substrates by using plasma-enhanced chemical vapor deposition from a Zn(C2H5)2 and NH3 gas mixture. The Zn3N2 film with a cubic antibixbyite structure transformed to ZnO:N with a hexagonal structure as the annealing temperature reached 500 °C. When the annealing temperature reached 700 °C, a high-quality p-type ZnO film with a carrier density of 4.16 × 1017 cm−3 was obtained, for which the film showed a strong near-band-edge emission at 3.30 eV without deep-level emission, and the full width at half-maximum of the photoluminescence spectrum was 120 meV at room temperature. The origin of the ultraviolet band was the overlap of free exciton and the bound exciton. The N concentration was as high as 1021 cm−3, which could be controlled by adjusting the parameters of the annealing processes.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Reynolds, D.C., Look, D.C., and Jogai, B., Solid State Commun. 99, 873 (1996).CrossRefGoogle Scholar
2.Bagnall, D.M., Chen, Y.F., Zhu, Z., Yao, T., Koyama, S., Shen, M.Y., and Goto, T., Appl. Phys. Lett. 70, 2230 (1997).CrossRefGoogle Scholar
3.Tang, T.K., Wong, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Appl. Phys. Lett. 72, 3270 (1998).CrossRefGoogle Scholar
4.Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).CrossRefGoogle Scholar
5.Mitra, A. and Thareja, R.K., J. Appl. Phys. 89, 2025 (2001).CrossRefGoogle Scholar
6.Service, R.F., Science 276, 895 (1997).CrossRefGoogle Scholar
7.Zhang, X.T., Liu, Y.C., Zhang, L.G., Zhang, J.Y., Lu, Y.M., Shen, D.Z., Xu, W., Zhong, G.Z., Fan, X.W., and Kong, X.G., Chin. Phys. Lett. 19, 127 (2002).Google Scholar
8.Minami, T., Sato, H., Nanto, H., and Takata, S., Jpn. J. Appl. Phys. 24, L781 (1985).CrossRefGoogle Scholar
9.Sato, Y. and Sato, S., Thin Solid Films 281–282, 445 (1996).CrossRefGoogle Scholar
10.Wang, X.Q., Yang, S.R., Wang, J.Z., Li, M.T., Jiang, X.Y., Du, G.T., Liu, X., Chang, R.P.H., J. Cryst. Growth 226, 123 (2001).CrossRefGoogle Scholar
11.Yan, Y.F., Zhang, S.B., Pennycook, S.J., and Pantelides, S.T. (unpublished).Google Scholar
12.Yamamoto, T. and Katayama, H.-Yoshida, Jpn. J. Appl. Phys. 38, L166 (1999).CrossRefGoogle Scholar
13.Joseph, M., Tabata, H., and Kawai, T., Jpn. J. Appl. Phys. 38, L1205 (1999).CrossRefGoogle Scholar
14.Joseph, M., Tabata, H., Saeki, H., Ueda, K., and Kawai, T., Physica B 302–303, 140 (2001).CrossRefGoogle Scholar
15.Guo, X.L., Tabata, H., and Kawai, T., J. Cryst. Growth. 223, 135 (2001).CrossRefGoogle Scholar
16.Kuriyama, K., Takahashi, Y., and Sunohara, F., Phys. Rev. B 48, 2781 (1993).CrossRefGoogle Scholar
17.Futsuhara, M., Yoshioka, K., and Takai, O., Thin Solid Films 322, 274 (1998).CrossRefGoogle Scholar
18.Li, B.S., Liu, Y.C., Shen, D.Z., Lu, Y.M., Zhang, J.Y., Kong, X.G., Zhi, Z.Z., and Fan, X.W.. J. Vac. Sci. Technol. A 20, 501 (2002).Google Scholar
19.Joseph, M., Tabata, H., and Kawai, T., Jpn. J. Appl. Phys. 38, L1025 (1999).CrossRefGoogle Scholar
20.Tsukazaki, A., Saito, H., Tamura, K., Ohtani, M., Koinuma, H., Sumiya, M., Fuke, S., Fukumura, T., and Kawasaki, M., Appl. Phys. Lett. 81, 235 (2002).CrossRefGoogle Scholar
21.Ryu, Y.R., Zhu, S., Look, D.C., Wrobel, J.M., Jeong, H.M., and White, H.W., J. Cryst. Growth 216, 330 (2000).CrossRefGoogle Scholar
22.Aoki, T., Hatanaka, Y., and Look, D.C., Appl. Phys. Lett. 76, 3257 (2000).CrossRefGoogle Scholar
23.Ryu, Y.R., Kim, W.J., and White, H.W., J. Cryst. Growth 219, 419 (2000).CrossRefGoogle Scholar
24.Wang, D., Liu, Y.C., Zhang, J.Y., Zhi, Z.Z., Shen, D.Z., Lu, Y.M., and Fan, X.W. (unpublished).Google Scholar
25.Yoo, Y.Z., Osaka, Y., Fukumura, T., Jin, Z.W., Kawasaki, M., Koimuma, H., Chikyow, T., Ahmet, P., Setoguchi, A., Chichibu, S.F., Appl. Phys. Lett. 78, 616 (2001).CrossRefGoogle Scholar
26.Joseph, M., Tabata, H., Saeki, H., Ueda, K., and Kawai, T., Physica B 302–302, 140 (2001).CrossRefGoogle Scholar
27.Butkuzi, T.V., Chelizde, T.G., Georgobiani, A.N., Jashiashvili, D.L., Khulordava, T.G., and Tsekvava, B.E., Phys. Rev. B 58, 10692 (1998).CrossRefGoogle Scholar
28.Ryu, M.K., Lee, S.H., Jang, M.S., Panin, G.N., and Kang, T.W., J. Appl. Phys. 92, 154 (2002).CrossRefGoogle Scholar
29.Ko, H.J., Chen, Y.F., Zhu, Z., Yao, T., Kobayashi, I., and Uchiki, H., Appl. Phys. Lett. 76, 1905 (2000).CrossRefGoogle Scholar