Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-18T09:26:06.621Z Has data issue: false hasContentIssue false

Optical absorbance enhancement by electrochemical surface roughening of CuInS2 thin films

Published online by Cambridge University Press:  31 January 2011

Romain Cayzac*
Affiliation:
Université d'Aix-Marseille I, II, III – CNRS, UMR 6264, Laboratoire Chimie Provence, Centre de Saint Jérôme, Marseille 13397, France
Thierry Djenizian
Affiliation:
Université d'Aix-Marseille I, II, III – CNRS, UMR 6264, Laboratoire Chimie Provence, Centre de Saint Jérôme, Marseille 13397, France
Marcel Pasquinelli
Affiliation:
Université d'Aix-Marseille I, II, III – CNRS, UMR 6242, Institut Matériaux Microélectronique Nanosciences de Provence, Centre de Saint Jérôme, Marseille, France
Philippe Knauth
Affiliation:
Université d'Aix-Marseille I, II, III – CNRS, UMR 6264, Laboratoire Chimie Provence, Centre de Saint Jérôme, Marseille 13397, France
*
a) Address all correspondence to this author. e-mail: romain.cayzac@etu.univ-provence.fr
Get access

Abstract

This work presents a simple electrochemical etching method to increase the surface roughness of copper indium disulphide (CIS) thin films using low concentration of hydrochloric acid. Film morphologies were investigated using scanning electron microscopy and atomic force microscopy. The structure of films was investigated using x-ray diffraction. A comparative study of optical properties of as-deposited and roughened CIS thin films by transmittance and reflectance experiments show a strong enhancement of absorbance for wavelengths between 600 and 900 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stefancich, M., Butturi, M., Vincenzi, D., and Martinelli, G.: Mechanical effects of chemical etchings on monocrystalline silicon for photovoltaic use. Sol. Energy Mater. Sol. Cells 69, 371 (2001).CrossRefGoogle Scholar
2.Jain, R.K. and Prasad, B.: Optimization study of titanium silica antireflective coatings in high efficiency silicon solar cells. Thin Solid Films 172, 15 (1989).Google Scholar
3.Seidel, H., Csepregi, L., Heuberger, A., and Baumgärtel, H.: Anisotropic etching of crystalline silicon in alkaline solutions. I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137, 3612 (1990).CrossRefGoogle Scholar
4.Kim, J.M. and Kim, Y.K.: The enhancement of homogeneity in the textured structure of silicon crystal by using ultrasonic wave in the caustic etching process. Sol. Energy Mater. Sol. Cells 81, 239 (2004).CrossRefGoogle Scholar
5.Nositschka, W.A., Beneking, C., Voigt, O., and Kurz, H.: Texturization of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks. Sol. Energy Mater. Sol. Cells 76, 155 (2003).CrossRefGoogle Scholar
6.Nositschka, W.A., Voigt, O., Manshanden, P., and Kurz, H.: Texturization of multicrystalline silicon solar cells by RIE and plasma etching. Sol. Energy Mater. Sol. Cells 80, 227 (2003).CrossRefGoogle Scholar
7.Manea, E., Budianu, E., Purica, M., Cernica, I., and Babarada, F.: Technological process for a new silicon solar cell structure with honeycomb textured front surface. Sol. Energy Mater. Sol. Cells 90, 2312 (2006).CrossRefGoogle Scholar
8.Dobrzański, L.A., Drygała, A., Gołombek, K., Panek, P., Bielańska, E., and Zięba, P.: Laser surface treatment of multicrystalline silicon for enhancing optical properties. J. Mater. Process. Technol. 201, 291 (2008).CrossRefGoogle Scholar
9.Kolesar, E.S. Jr., Bright, V.M., and Sowders, D.M.: Optical reflectance reduction of textured silicon surfaces coated with an antireflective thin film. Thin Solid Films 290, 23 (1996).CrossRefGoogle Scholar
10.Brinker, C.J. and Harrington, M.S.: Sol-gel derived antireflective coatings for silicon. Sol. Energ. Mater. 5, 159 (1981).Google Scholar
11.Vicente, G. San, Morales, A., and Gutierrez, M.T.: Preparation and characterization of sol–gel TiO2 antireflective coatings for silicon. Thin Solid Films 391, 133 (2001).CrossRefGoogle Scholar
12.Zenia, F., Lévy-Clément, C., Triboulet, R., Munoz, V., Ernst, K., Kaiser, I., Lux-Steiner, M.Ch., and Könenkamp, R.: Surface texturization of ZnTe crystals and thin films. Thin Solid Films 361, 49 (2000).CrossRefGoogle Scholar
13.Kazmerski, L.L. and Shieh, C.C.: Photoconductivity effects in CuInS2, CuInSe2 and CuInTe2 thin films. Thin Solid Films 41, 35 (1977).Google Scholar
14.Contreras, M., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., and Noufi, R.: Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1-xGax)Se2 solar cells. Prog. Photovoltaics Res. Appl. 7, 311 (1999).Google Scholar
15.Martinez, A.M., Arriaga, L.G., Fernandez, A.M., and Cano, U.: Band edges determination of CuInS2 thin films prepared by electrodeposition. Mater. Chem. Phys. 88, 417 (2004).CrossRefGoogle Scholar
16.Scheer, R., Klenk, R., Klaer, J., and Luck, I.: CuInS2 based thin film photovoltaics. Sol. Energy 77, 777 (2004).CrossRefGoogle Scholar
17.Contreras, M.A., Egaas, B., King, D., Swartzlander, A., and Dullweber, T.: Texture manipulation of CuInSe2 thin films. Thin Solid Films 361, 167 (2000).CrossRefGoogle Scholar
18.Sardi, M.Z. and Vedel, J.: Anodic oxidation of copper indium diselenide thin films. Cond. Mat. Film Be. 204, 185 (1991).Google Scholar
19.Razziani, G. and Bicelli, L. Peraldo: Surface treatments of n-CuInSe2 polycrystalline electrodes for photoelectrochemical applications. J. Electroanal. Chem. 208, 85 (1986). 20. III-Vs Review 18 2 (2005), p. 17.CrossRefGoogle Scholar
21.Cayzac, R., Boulc'h, F., Bendahan, M., Pasquinelli, M., and Knauth, P.: Preparation and optical absorption of electrodeposited or sputtered, dense or porous nanocrystalline CuInS2 thin films. C.R. Chim. 11, 1016 (2008).CrossRefGoogle Scholar
22.Cayzac, R., Boulc'h, F., Bendahan, M., Pasquinelli, M., and Knauth, P.: Direct preparation of crystalline CuInS2 thin-films by radiofrequency sputtering. Mater. Sci. Eng., B 157, 66 (2009).CrossRefGoogle Scholar
23.Hwang, H.L., Cheng, C.L., Liu, L.M., Liu, Y.C., and Sun, C.Y.: Growth and properties of sputter-deposited CuInS2 thin films. Thin Solid Films 67, 83 (1980).CrossRefGoogle Scholar
24.Yamamoto, Y., Yamaguchi, T., Demizu, Y., Tanaka, T., and Yoshida, A.: Fabrication and characterization of CuIn(SxSe1°x) 2 thin films deposited by r.f. sputtering. Thin Solid Films 281, 372 (1996).CrossRefGoogle Scholar
25.Yamamoto, Y., Yamaguchi, T., Tanaka, T., Tanahashi, N., and Yoshida, A.: Characterization of CuInS2 thin films prepared by sputtering from binary compounds. Sol. Energy Mater. Sol. Cells 49, 399 (1997).CrossRefGoogle Scholar
26.Premchand, Y.D., Djenizian, T., Vacandio, F., and Knauth, P.: Fabrication of self-organized TiO2 nanotubes from columnar titanium thin films sputtered on semiconductor surfaces. Electrochem. Commun. 8, 1840 (2006).CrossRefGoogle Scholar
27.Hasegawa, H. and Sato, T.: Electrochim. Acta 50, 3015 (2005).CrossRefGoogle Scholar
28.Kondo, K., Nakamura, S., Sano, H., Hirasawa, H., and Sato, K.: Growth of CuInS2 films by rf ion plating and their characterization. Sol. Energy Mater. Sol. Cells 49, 327 (1997).CrossRefGoogle Scholar
29.Ihlal, A., Bouabid, K., Soubane, D., Nya, M., Ait-Taleb-Ali, O., Amira, Y., Outzourhit, A., and Nouet, G.: Comparative study of sputtered and electrodeposited CI(S,Se) and CIGSe thin films. Thin Solid Films 515, 5852 (2007).CrossRefGoogle Scholar
30.Yunxia, C., Xin, H., Xiujian, Z., Song, M., and Xingyong, G.: Preparation and characterization of copper indium disulfide films by facile chemical method. Mater. Sci. Eng., B 139, 88 (2007).Google Scholar
31.He, Y.B., Krämer, T., Polity, A., Gregor, R., Kriegseis, W., Österreicher, I., Hasselkamp, D., and Meyer, B.K.: Preparation and characterization of highly (1 1 2)-oriented CuInS2 films deposited by a one-stage RF reactive sputtering process. Thin Solid Films 431, 231 (2003).Google Scholar
32.Grigoras, K., Krotkus, A., Pacebutas, V., Kavaliauskas, J., and Simkien, I.: Enhanced light absorption in anodically etched silicon wafers. Thin Solid Films 276, 228 (1996).Google Scholar