Skip to main content Accessibility help

One-pot synthesis of core–shell structured Sn/carbon nanotube by chemical vapor deposition and its Li-storage properties

  • Yunxiao Zheng (a1), Jian Xie (a1), Wentao Song (a1), Shuangyu Liu (a1), Gaoshao Cao (a1) and Xinbing Zhao (a1)...


Core–shell structured Sn/carbon nanotube (CNT) was prepared by one-pot chemical vapor deposition (CVD) method in N2/C2H2 (10% C2H2) using nanosized SnO2 as the starting material. The obtained one-dimensional material is composed of a disordered carbon shell and a single-crystalline Sn nanorod core. The diameter of the Sn nanorod and the thickness of the carbon shell are around 40–50 and 4–5 nm, respectively, when the CVD reaction was carried out at 650 °C for 2 h. The core–shell structured Sn/CNT exhibits improved electrochemical performance compared with bare Sn with a diameter of around 100 nm. A reversible capacity of around 350 mAh/g can be retained after 20 cycles at 50 mA/g for Sn/CNT, while for bare Sn, the capacity drops rapidly to 100 mAh/g after the same cycles.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Idota, Y., Kobota, T., Matsufuji, A., Maekawa, Y., and Miyasaka, T.: Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395 (1997).
2.Kepler, K.D., Vaughey, J.T., and Thackeray, M.M.: LixCu6Sn5 (0<x<13): An intermetallic insertion electrode for rechargeable lithium batteries. Electrochem. Solid-State Lett. 2, 307 (1999).
3.Larcher, D., Beaulieu, L.Y., Mao, O., George, A.E., and Dahn, J.R.: Study of the reaction of lithium with isostructural A2B and various AlxB alloys. J. Electrochem. Soc. 147, 1703 (2000).
4.Crosnier, O., Brousse, T., Devaux, X., Fragnaud, P., and Schleich, D.M.: New anode systems for lithium ion cells. J. Power Sources 94, 169 (2001).
5.Larcher, D., Prakash, A.S., Saint, J., Morcrette, M., and Tarascon, J.M.: Electrochemical reactivity of Mg2Sn phases with metallic lithium. Chem. Mater. 16, 5502 (2004).
6.Bonakdarpour, A., Hewitt, K.C., Turner, R.L., and Dahn, J.R.: Electrochemical and in situ XRD studies of the Li reaction with combinatorially sputtered Mo1-xSnx (0 ≤ x ≤ 0.50) thin films. J. Electrochem. Soc. 151, A470 (2004).
7.Todd, A.D.W., Mar, R.E., and Dahn, J.R.: Combinatorial study of tin-transition metal alloys as negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 153, A1998 (2006).
8.Vaughey, J.T., Owejan, J., and Thackeray, M.M.: Substituted MxCu6-xSn5 compounds (M = Fe, Co, Ni, Zn) designing multicomponent intermetallic electrodes for lithium batteries. Electrochem. Solid-State Lett. 10, A220 (2007).
9.Vaughey, J.T., Thackeray, M.M., Shin, D., and Wolverton, C.: Studies of LaSn3 as a negative electrode for lithium-ion batteries. J. Electrochem. Soc. 156, A536 (2009).
10.Todd, A.D.W., Ferguson, P.P., Fleischauer, M.D., and Dahn, J.R.: Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods. Int. J. Energy Res. 34, 535 (2010).
11.Nwokeke, U.G., Alcántara, R., Tirado, J.L., Stoyanova, R., Yoncheva, M., and Zhecheva, E.: Electron paramagnetic resonance, X-ray diffraction, Mössbauer spectroscopy, and electrochemical studies on nanocrystalline FeSn2 obtained by reduction of salts in tetraethylene glycol. Chem. Mater. 22, 2268 (2010).
12.Noh, M., Kwon, Y., Lee, H., Cho, J., Kim, Y., and Kim, M.G.: Amorphous carbon-coated tin anode material for lithium secondary battery. Chem. Mater. 17, 1926 (2005).
13.Hassoun, J., Derrien, G., Panero, S., and Scrosati, B.: A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 20, 3169 (2008).
14.Jung, Y.S., Lee, K.T., Ryu, J.H., Im, D., and Oh, S.M.: Sn-carbon core-shell powder for anode in lithium secondary batteries. J. Electrochem. Soc. 152, A1452 (2005).
15.Egashira, M., Takatsuji, H., Okada, S., and Yamaki, J.: Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries. J. Power Sources 107, 56 (2002).
16.Yu, Y.H., Yang, Q., Teng, D.H., Yang, X.P., and Ryu, S.: Reticular Sn nanoparticle-dispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries. Electrochem. Commun. 12, 1187 (2010).
17.Veeraraghavan, B., Durairajan, A., Haran, B., Popov, B., and Guidotti, R.: Study of Sn-coated graphite as anode material for secondary lithium-ion batteries. J. Electrochem. Soc. 149, A675 (2002).
18.Balan, L., Ghanbaja, J., Willmann, P., and Billaud, D.: Novel tin-graphite composites as negative electrodes of Li-ion batteries. Carbon 43, 2311 (2005).
19.Lee, J.H., Kong, B.S., Yang, S.B., and Jung, H.T.: Fabrication of single-walled carbon nanotube/tin nanoparticle composites by electrochemical reduction combined with vacuum filtration and hybrid co-filtration for high-performance lithium battery electrodes. J. Power Sources 194, 520 (2009).
20.Guo, Z.P., Zhao, Z.W., Liu, H.K., and Dou, S.X.: Electrochemical lithiation and de-lithiation of MWNT-Sn/SnNi nanocomposites. Carbon 43, 1392 (2005).
21.Yu, Y., Gu, L., Zhu, C.B., van Aken, P.A., and Maier, J.: Tin nanoparticles encapsulated in porous multichannel carbon microtubes: Preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J. Am. Chem. Soc. 131, 15984 (2009).
22.Wang, Y., Wu, M.H., Jiao, Z., and Lee, J.Y.: Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem. Mater. 21, 3210 (2009).
23.Ningthoujam, R.S. and Kulshreshtha, S.K.: Nanocrystalline SnO2 from thermal decomposition of tin citrate crystal: Luminescence and Raman studies. Mater. Res. Bull. 44, 57 (2009).
24.Yang, Z.X., Du, G.D., Guo, Z.P., Yu, X.B., Chen, Z.X., Zhang, P., Chen, G.N., and Liu, H.K.: Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties. J. Mater. Res. 25, 1516 (2010).
25.Moon, T., Kim, C., Hwang, S.T., and Park, B.: Electrochemical properties of disordered-carbon-coated SnO2 nanoparticles for Li rechargeable batteries. Electrochem. Solid-State Lett. 9, A408 (2006).
26.Li, R.Y., Sun, X.C., Zhou, X.R., Cai, M., and Sun, X.L.: Aligned heterostructures of single-crystalline tin nanowires encapsulated in amorphous carbon nanotubes. J. Phys. Chem. C 111, 9130 (2007).
27.Lee, S.H., Mathews, M., Toghiani, H., Wipf, D.O., and Pittman, C.U. Jr.: Fabrication of carbon-encapsulated mono- and bimetallic (Sn and Sn/Sb Alloy) nanorods. Potential lithium-ion battery anode materials. Chem. Mater. 21, 2306 (2009).
28.Wang, Y. and Lee, J.Y.: One-step, confined growth of bimetallic tin-antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage. Angew. Chem. Int. Ed. 45, 7039 (2006).
29.Huggins, R.A.: Lithium alloy negative electrodes formed from convertible oxides. Solid State Ion. 113, 57 (1998).
30.Huggins, R.A.: Lithium alloy negative electrodes. J. Power Sources 81, 13 (1999).


Related content

Powered by UNSILO

One-pot synthesis of core–shell structured Sn/carbon nanotube by chemical vapor deposition and its Li-storage properties

  • Yunxiao Zheng (a1), Jian Xie (a1), Wentao Song (a1), Shuangyu Liu (a1), Gaoshao Cao (a1) and Xinbing Zhao (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.