Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-02T21:17:52.038Z Has data issue: false hasContentIssue false

On the occurrence of a metastable tetragonal t′-phase in a ZrO2−13.6 mole % MgO ceramic and its microscopic thermal evolution

Published online by Cambridge University Press:  31 January 2011

M.C. Caracoche
Affiliation:
Departamento de Física, UNLP, C. C.NO 67, 1900 La Plata, Argentina
P.C. Rivas
Affiliation:
Departamento de Física, UNLP, C. C.NO 67, 1900 La Plata, Argentina
A.F. Pasquevich
Affiliation:
Departamento de Física, UNLP, C. C.NO 67, 1900 La Plata, Argentina
A.R. López García
Affiliation:
Departamento de Física, UNLP, C. C.NO 67, 1900 La Plata, Argentina
E. Aglietti
Affiliation:
Centro de Tecnología en Recursos Minerales y Cerámica, C. C. NO 49, 1897 M.B. Gonnet, Argentina
A. Scian
Affiliation:
Centro de Tecnología en Recursos Minerales y Cerámica, C. C. NO 49, 1897 M.B. Gonnet, Argentina
Get access

Abstract

The time-differential perturbed angular correlation technique has been used to investigate the thermal behavior of a ZrO2−13.6 mole % MgO ceramic between room temperature and 1423 K. Two different quadrupole hyperfine interactions corresponding to a tetragonal structure have been found to result on cooling the ceramic from the single-phase cubic field. One of them agrees with that depicting the pure t-ZrO2 tetragonal phase and the other one has been interpreted as describing a high-MgO-content nontransformable t'–ZrO2 phase. As temperature increases, the latter gives rise to a similar but fluctuating interaction related to the oxygen vacancies mobility and which shows a thermal behavior analogous to that already reported for the stabilized cubic ZrO2. Above 1100 K these dynamic t'-sites transform into pure tetragonal ones which behave ordinarily, suffering the tm phase transition when cooling to room temperature. Differences found between TDPAC results and information drawn from other techniques are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Stevens, R., Zirconia and Zirconia Ceramics (Magnesium Elektron Ltd., U.K., 1986), and references therein.Google Scholar
2Adv. Ceram., 24A and 24B: Science and Technology of Zirconia III, edited by Sōmiya, Shigeyuki, Yamamoto, Noborn, and Yanagida, Hiroaki (The American Ceramic Society, Inc., Westerville, OH, 1988).Google Scholar
3Baudry, A., Boyer, P., and Oliveira, A. L. de, Hyp. Int. 10, 1003 (1981).Google Scholar
4Jaeger, H., Gardner, J., Haygarth, J., and Rasera, R. L., J. Am. Ceram. Soc. 69, 458 (1986).CrossRefGoogle Scholar
5Gardner, J., Jaeger, H., Su, H. T., Warnes, W. H., and Haygarth, J., Physica B 150, 223 (1988).Google Scholar
6Frauenfelder, H. and Steffen, R. M., in Alpha-, Beta-, and Gamma-Ray Spectroscopy, edited by Siegbahn, K. (North-Holland, Amsterdam, 1965), p. 997.Google Scholar
7Hishinuma, K., Kumaki, T., Nakai, Z., Yoshimura, M., and Sōmiya, S., Adv. Ceram. 24A, 205 (1988).Google Scholar
8Noma, T., Yoshimura, M., Somiya, S., Kato, M., Shibata, M., and Seto, H., Adv. Ceram. 24A, 379 (1988).Google Scholar
9Morrell, P. and Taylor, R., Adv. Ceram. 24B, 932, 935 (1988).Google Scholar
10Srinivasan, R., Harris, M. B., Simpson, S. F., Angelis, R.J. De, and Davis, B. H., J. Mater. Res. 3, 787 (1988).CrossRefGoogle Scholar
11Phillippi, CM. and Mazdiyasni, K.S., J. Am. Ceram. Soc. 54, 254 (1971).CrossRefGoogle Scholar
12Aleksandrov, V.I., Voron'ko, Yu. K., Ignat'ev, B.V., Lomonova, E.E., Osiko, V. V., and Sobol, A. A.', Sov. Phys. Solid State 20, 305 (1978).Google Scholar
13Feinberg, A. and Perry, C. H., J. Phys. Chem. Solids 42, 513 (1981).CrossRefGoogle Scholar
14Kerenidas, V. G. and White, W. B., J. Phys. Chem. Solids 34, 1873 (1973).Google Scholar
15Caracoche, M. C., Dova, M. T., García, A. R. López, Martínez, J. A., and Rivas, P.C., Hyp. Int. 39, 117 (1988).CrossRefGoogle Scholar
16Lanteri, V., Chaim, R., and Heuer, A. H., J. Am. Ceram. Soc. 69, C-258 (1986).Google Scholar
17Chaim, R., Rühle, M., and Heuer, A. H., J. Am. Ceram. Soc. 68, 427 (1985).CrossRefGoogle Scholar
18Heuer, A.H., Chaim, R., and Lanteri, V., Acta Metall. 35, 661 (1987).CrossRefGoogle Scholar
19Knapp, C.E., Manwiller, K.E., and Arvidson, D.B., Adv. Ceram. 24A, 369 (1988).Google Scholar
20Sato, T. and Shimada, M., J. Mater. Sci. 20, 3988 (1985).CrossRefGoogle Scholar
21Jaeger, H., Gardner, J. A., Rasera, R. L., and Evenson, W. E., Bull. Am. Phys. Soc. 32, 414 (1987).Google Scholar
22Dworak, U., Olapinski, H., and Burger, W., Adv. Ceram. 24A, 545 (1988).Google Scholar