Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T21:13:01.076Z Has data issue: false hasContentIssue false

On the nature of the quasicrystalline phases obtained in alloys of Al86Mn14 under slow solidification rates

Published online by Cambridge University Press:  31 January 2011

J. Reyes-Gasga
Affiliation:
Laboratorio de Ensenada, Instituto de Fisica, UNAM, Apdo. Postal 2681, Ensenada, B.C. 22800 Mexico
J. G. Pérez-Ramírez
Affiliation:
Laboratorio de Ensenada, Instituto de Fisica, UNAM, Apdo. Postal 2681, Ensenada, B.C. 22800 Mexico
R. Pérez
Affiliation:
Laboratorio de Ensenada, Instituto de Fisica, UNAM, Apdo. Postal 2681, Ensenada, B.C. 22800 Mexico
Get access

Abstract

An investigation of the quasicrystalline phases obtained in alloys of Al86Mn14 under slow solidification rates is carried out. A quasicrystalline phase similar to the so-called T phase [L. Bendersky, R. J. Schaefer, F. S. Biancaniello, M. J. Boettinger, M. J. Kaufman, and D. Schechtman, Scr. Metall. 19, 909 (1985)] is found. However, this phase also shows a pseudofivefold axis and a threefold diffraction pattern similar to the same orientation in the reported phase of Al4Mn. The analysis of pseudofivefold diffraction patterns from different quasicrystalline grains shows elliptical arrangements of spots with different eccentricities. The presence of planar faults indicates the existence of slip pseudoplanes and slip directions in the quasicrystal. Different eccentricities might suggest that some of the reported quasicrystalline phases (T, T′, T″, …, etc.) are structural states obtained from the icosahedral quasicrystalline phase when particular stress environments are acting.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shechtman, D.Schaefer, R. J. and Biancaniello, F. S.Metall. Trans. A15, 1987 (1984).Google Scholar
2Chattopadhyay, K.Raganathan, S.Subbana, G. N. and Thangaraj, N., Scr. Metall. 19, 767 (1985).Google Scholar
3Perez, R.Perez-Ramirez, J. G., Gomez, A.Herrera, R. and Jose-Yacaman, M., Scr. Metall. 20, 401 (1986).Google Scholar
4Perez-Ramirez, J. G., Martinez, L.Cota, L.Albarran, J. and Jose-Yacaman, M., Scr. Metall. 20, 881 (1986).Google Scholar
5Bendersky, L.Schaefer, R. J.Biancaniello, F. S.Boettinger, M. J.Kaufman, M. J. and Shechtman, D.Scr. Metall. 19, 909 (1985).CrossRefGoogle Scholar
6Thanjaraj, N.Prosad, R.Chattopadyay, K. and Ranganathan, S. submitted to Phys. Rev. Lett.Google Scholar
7Fall, H.Carter, C. B. and Wilkens, M.Phys. Status Solidi A58, 393 (1980).Google Scholar
8Urban, K.Mayer, J.Rapp, M.Wilknes, M.Csanady, A. and Fidder, J.J. Phys. 47, C3465 (1986).Google Scholar
9Bendersky, L.J. Phys. 47, C3457 (1986).Google Scholar
10Perez-Ramirez, J. G., Perez, R.Reyes-Gasga, J., and Jose-Yaca-man, M., Scr. Metall. 21, 1219 (1987).CrossRefGoogle Scholar
11Perez-Ramirez, J. G., Perez, R. and Jose-Yacaman, M., Scr. Metall. 20, 1523 (1986).Google Scholar