Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T08:43:18.163Z Has data issue: false hasContentIssue false

Nucleation and growth of YBa2Cu3Ox on SrTiO3 and CeO2 by a BaF2 postdeposition reaction process

Published online by Cambridge University Press:  31 January 2011

L. Wu
Affiliation:
Division of Materials and Chemical Sciences, Energy Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973–5000
Y. Zhu
Affiliation:
Division of Materials and Chemical Sciences, Energy Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973–5000
V. F. Solovyov
Affiliation:
Division of Materials and Chemical Sciences, Energy Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973–5000
H. J. Wiesmann
Affiliation:
Division of Materials and Chemical Sciences, Energy Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973–5000
A. R. Moodenbaugh
Affiliation:
Division of Materials and Chemical Sciences, Energy Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973–5000
R. L. Sabatini
Affiliation:
Division of Materials and Chemical Sciences, Energy Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973–5000
M. Suenaga
Affiliation:
Division of Materials and Chemical Sciences, Energy Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973–5000
Get access

Abstract

The nucleation and growth of the c-axis-aligned Yba2Cu3Ox on SrTiO3 and CeO2, from precursor films, were studied by examining quenched and fully processed specimens using transmission electron microscopy techniques. The precursor films, a stoichiometric mixture of fine-grained Y, Cu, and BaF2, were deposited using physical vapor deposition methods. An Y-Ba oxy-fluoride formed from the precursor contributed to the nucleation of Yba2Cu3Ox, while a liquid layer between the unreacted precursor and the Yba2Cu3Ox layer played an important role in the growth of Yba2Cu3Ox. However, the process of nucleation of Yba2Cu3Ox on SrTiO3 and CeO2 were significantly different.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Malozemoff, A.P., Carter, W., Fleshler, S., Fritzemeier, L., Li, Q., Masur, L., Miles, P., Parker, D., Parrella, R., Podtburg, E., Riley, G.N. Jr., Rupich, M., Scudiere, J., and Zhang, W., IEEE Trans. Appl. Supercond. 9, 2469 (1999).CrossRefGoogle Scholar
2 See for example: Hilgenkamp, H. and Mannhart, J., J. Appl. Phys. Lett. 73, 265 (1998); Heinig, N.F., Redwing, R.D., Tsu, I.F., Gruevich, A., Nordman, N.E., Babcock, S.E., and Larbalestier, D.C., Appl. Phys. Lett. 69, 577 (1996).Google Scholar
3Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1192); Wu, X.D., Foltyn, S.R., Arendt, P.N., Blumenthal, W.R., Campbell, I.H., Cotton, J.D., Coulter, J.Y., Hults, W.L., Maley, M.P., Safar, H.F., and Smith, J.L., Appl. Phys. Lett. 67, 2397 (1995).Google Scholar
4Foltyn, S.R., Arendt, P.N., DePaula, R.F., Dowden, P.C., Coulter, J.Y., Groves, J.R., Haussanmen, L.N., Winstorn, L.P., Jia, O.X., and Maley, M.P., Physica C (2000, in press).Google Scholar
5Goyal, A., Norton, D.P., Budai, J.D., Paranthanman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, A., Safian, B., List, F.A., Lee, D.F., Martin, P.M., Klabudne, C.E., Harfield, E., and Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).Google Scholar
6Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthanman, M., Klabudne, D.E., Lee, D.F., Sales, B.C., and List, F.A., Science 274, 755 (1997).Google Scholar
7Feenstra, R. (unpublished).Google Scholar
8Rupich, M., Li, Q., Annavarapu, S., Thieme, C., and Prunier, V., presented at the Applied Superconductivity Conference, Virginia Beach, VA, Sep 17–22, 2000.Google Scholar
9Mankiewich, P.M., Schofield, J.H., Skocpol, W.J., Horward, R.E., Dayem, A.H., and Good, E., Appl. Phys. Lett. 51, 1753 (1987).CrossRefGoogle Scholar
10Siegal, M.P., Phillips, J.M., van Dover, R.B., Tiefel, T.H., and Marshall, J.H., J. Appl. Phys. 68, 6353 (1990); Siegal, P.P., Hou, S.Y., Phillips, J.M., Tiefel, T.H., and Marshall, J.H., J. Mater. Res. 7, 2658 (1992).CrossRefGoogle Scholar
11Feenstra, R., Lindemer, T.B., Budai, J.D., and Galloway, M.D., J. Appl. Phys. 69, 6569 (1991); Feenstra, R., Lindemer, T.B., Budai, J.D., and Galloway, M.D., J. Appl. Phys. 60, 6569 (1990); Feenstra, R., Christen, D.K., Budai, J.D., Pennycook, S.J., Norton, D.P., Lowndes, H.H., Klanbunde, C.D., and Galloway, M.D., in Proc. of Sym. A-1 on High Temp. Supercond. Films at the Internat. Conf. on Adv. Mater., Strasbury, France, 1991, edited by Corena, L. (North-Holland, Amsterdam, The Netherlands), p. 331.CrossRefGoogle Scholar
12Gupta, A., Jagannathan, R., Cooper, E.I., Geiss, E.A., Landman, J.I., and Hussey, B.E., Appl. Phys. Lett. 53, 2077 (1988).Google Scholar
13McIntyre, P.C., Cima, M.J., and Ng, M.F., J. Appl. Phys. 68, 4183 (1990).CrossRefGoogle Scholar
14Solovyov, V.F., Weismann, H.J., Wu, L., Suenaga, M., and Feenstra, R., IEEE Trans. Appl. Supercond. 9, 1469 (1999) (and unpublished works).Google Scholar
15Solovyov, V.F., Weismann, H.J., and Suenaga, M., Physica C (2001, in press).Google Scholar
16McIntyre, P.C. and Cima, M., J. Mater. Res. 9, 2219 (1994).CrossRefGoogle Scholar
17Solovyov, V.F., Weismann, H.J., Suenaga, M., and Feenstra, R., Physica C 309, 269 (1998).Google Scholar
18Smith, J.A., Cima, M.J., and Sonnenberg, N., IEEE Trans. Appl. Supercond. 9, 1531 (1999).CrossRefGoogle Scholar
19Maffott, W.G., Handbook of Binary Phase Diagrams (Gerium, Schenectady, NY, 19841999) [Cu–O, Neumann, J.P., Zhong, T., and Chang, Y.A., 1984].Google Scholar
20Dam, B. and Stauüble-Puümpin, B., J. Mater. Sci.: Electron, 9, 217 (1998); Dam, B., Rector, J.H., Juijbregtse, J.M., and Greissen, R., Physica C 296, 179 (1998).Google Scholar
21Solovyov, V.F., Weismann, H.J., Wu, Lijun, Zhu, Y., and Suenaga, M., Appl. Phys. Lett. 76, 1911 (2000).CrossRefGoogle Scholar
22Unpublished.Google Scholar
23Feenstra, R., Lindemer, T.B., Budai, J.D., and Gallorway, M.D., J. Appl. Phys. 69, 6569 (1991).Google Scholar
24McIntyre, P.C., Cima, M.J., Smith, J.A. Jr., Hallock, R.G., Siegal, M.P., and Phillips, J.M., J. Appl. Phys. 71, 1868 (1992).Google Scholar
25Derks, W.P.T., van Hal, H.A.M., and Langereis, C., Physica C 156, 62 (1988).CrossRefGoogle Scholar
26Edvardsson, C.N.L., Helmersson, U., Czigany, Zs., Ryen, L., and Olsson, E., Physica C 304, 245 (1998).CrossRefGoogle Scholar
27Ritter, J.J., Roth, R.S., and Blendell, J.E., J. Am. Ceram. Soc. 69, 155 (1986).Google Scholar
28Kwestroo, W. and Paping, H.A.M., J. Am. Ceram. Soc. 42, 292 (1959).CrossRefGoogle Scholar