Skip to main content Accessibility help

Novel growth mode of solid–liquid–solid (SLS) silica nanowires

  • Jae Ho Lee (a1), Michael A. Carpenter (a1) and Robert E. Geer (a1)


A novel and previously unreported, high temperature solid–liquid–solid (SLS) silica nanowire (NW) growth mode has been observed and investigated. In this mode, SLS NW nucleation and subsequent growth was uniquely promoted by—and coupled to—the formation of thermally etched pyramidal pits in the Si substrate that formed during a high temperature anneal phase before the onset of SLS NW formation. The silicon oxide-mediated thermal pit formation process enhanced Si transport to Au–Si alloy droplets directly adjacent to the pyramidal pits. Consequently, SLS NW nucleation and growth was preferentially promoted at the pit edges. The promotion of SLS NW growth by the pyramidal pits resulted in the observation of SLS NW “blooms” at the pit locations. Subsequent NW growth, occurring both at the pit sites and from Au–Si alloy droplets distributed across the planar surfaces of the Si wafer, eventually occluded the pits. This newly observed process is termed as “thermal pit-assisted growth.”


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).
2.Lu, W. and Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater. 6, 841 (2007).
3.Colli, A., Fasoli, A., Beecher, P., Servati, P., Pisana, S., Fu, Y., Flewitt, A.J., Milne, W.I., Robertson, J., Ducati, C., De Franceschi, S., Hofmann, S., and Ferrari, A.C.: Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties. J. Appl. Phys. 102, 034302 (2007).
4.Wu, Y., Xiang, J., Yang, C., Lu, W., and Lieber, C.M.: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61 (2004).
5.Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I., and Lee, S.T.: Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 721, 835 (1998).
6.Zakharov, N.D., Werner, P., Gerth, G., Schubert, L., Sokolov, L., and Gösele, U.: Growth phenomena of Si and Si/Ge nanowires on Si (111) by molecular beam epitaxy. J. Cryst. Growth 290, 6 (2006).
7.Yu, D.P., Bai, Z.G., Ding, Y., Hang, Q.L., Zhang, H.Z., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C., Zhou, H.T., and Feng, S.Q.: Nanoscale silicon wires synthesized using simple physical evaporation. Appl. Phys. Lett. 72, 3458 (1998).
8.Westwater, J., Gosain, D.P., Tomiya, S., Usui, S., and Ruda, H.: Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J. Vac. Sci. Technol., B 15, 554 (1997).
9.Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J., and Lieber, C.M.: Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214 (2001).
10.Hochbaum, A.I., Fan, R., He, R., and Yang, P.: Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457 (2005).
11.Paulose, M., Varghese, O.K., and Grimes, C.A.: Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth. J. Nanosci. Nanotechnol. 3, 341 (2003).
12.Yan, H.F., Xing, Y.J., Hang, Q.L., Yu, D.P., Wang, Y.P., Xu, J., Xi, Z.H., and Feng, S.Q.: Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism. Chem. Phys. Lett. 323, 224 (2000).
13.Wagner, R.S. and Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).
14.Givargizov, E.I.: Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20 (1975).
15.Zhang, R.Q., Lifshitz, Y., and Lee, S.T.: Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 15, 635 (2003).
16.Zhang, R.Q., Chu, T.S., Cheung, H.F., Wang, N., and Lee, S.T.: Mechanism of oxide-assisted nucleation and growth of silicon nanostructures. Mater. Sci. Eng., C 16, 31 (2001).
17.Zhang, R.Q., Chu, T.S., Cheung, H.F., Wang, N., and Lee, S.T.: High reactivity of silicon suboxide clusters. Phys. Rev. B 64, 113304 (2001).
18.Lee, J.H., Rogers, P.H., Carpenter, M.A., Eisenbraun, E.T., Xue, Y., and Geer, R.E.: Synthesis and properties of templated Si-based nanowires for electrical transport, in Proceedings of Eighth IEEE Conference on Nanotechnology, IEEE NANO ’08, Arlington, TX, 2008, p. 584.
19.Sekhar, P.K., Ramgir, N.S., Joshi, R.K., and Bhansali, S.: Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10. Nanotechnology 19, 245502 (2008).
20.Kim, J.H., An, H.H., Woo, H.J., and Yoon, C.S.: The growth mechanism for silicon oxide nanowires synthesized from an Au nanoparticle/polyimide/Si thin film stack. Nanotechnology 19, 125604 (2008).
21.Ueda, K. and Yoshimura, M.: Formation of micromeshes by nickel silicide. Thin Solid Films 464, 208 (2004).
22.Chang, C.-C. and Shen, P.: Thermal-etching development of α-Zn2SiO4 polycrystals: Effects of lattice imperfections, Mn-dopant and capillary force. Mater. Sci. Eng., A 288, 42 (2000).
23.Reisman, A., Edwards, S.T., and Smith, P.L.: On the thermal etching of silicon. J. Electrochem. Soc. 135, 2848 (1988).
24.Reisman, A., Temple, D., and Smith, P.L.: Further comments on the thermal etching of silicon: The surface morphology of (100), (111) and (110) wafers in the temperature range 900°-1150°C. J. Electrochem. Soc. 137, 284 (1990).
25.Yazdi, G.R., Syvajarvi, M., and Yakimova, R.: Formation of needle-like and columnar structures of AlN. J. Cryst. Growth 300, 130 (2007).
26.Futagami, M. and Hamazaki, M.: Thermal etching of a (100) silicon surface. Jpn. J. Appl. Phys. 21, 1782 (1982).
27.Wang, C.Y., Chan, L.H., Xiao, D.Q., Lin, T.C., and Shiha, H.C.: Mechanism of solid-liquid-solid on the silicon oxide nanowire growth. J. Vac. Sci. Technol., B 24, 613 (2006).
28.Elechiguerra, J.L., Manriquez, J.A., and Yacaman, M.J.: Growth of amorphous SiO2 nanowires on Si using a Pd/Au thin film as a catalyst. Appl. Phys. A Mater. Sci. Process. 79, 461 (2004).
29.Rubloff, G.W., Tromp, R.M., van Loenen, E.J., Balk, P., and LeGoues, F.K.: Summary Abstract: High temperature decomposition of SiO2 at the Si/SiO2 interface. J. Vac. Sci. Technol., A 4, 1024 (1986).
30.Tromp, R., Rubloff, G.W., Balk, P., and LeGoues, F.K.: High-temperature SiO2 decomposition at the SiO2/Si interface. Phys. Rev. Lett. 55, 2332 (1985).
31.Suzuki, T.: Effect of annealing a silicon wafer in argon with a very low oxygen partial pressure. J. Appl. Phys. 88, 6881 (2000).
32.Suzuki, T.: Relation between the suppression of the generation of stacking faults and the mechanism of silicon oxidation during annealing under argon containing oxygen. J. Appl. Phys. 88, 1141 (2000).
33.Suzuki, T.: Oxygen partial pressure dependence of suppressing oxidation-induced stacking fault generation in argon ambient annealing including oxygen and HCl. Appl. Surf. Sci. 180, 168 (2001).
34.Surdu-Boba, C.C., Sullivana, J.L., Saieda, S.O., Layberrya, R., and Aflorib, M.: Surface compositional changes in GaAs subjected to argon plasma treatment. Appl. Surf. Sci. 202, 183 (2002).
35.Pan, Z.W., Dai, Z.R., Ma, C., and Wang, Z.L.: Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 124, 1817 (2002).


Novel growth mode of solid–liquid–solid (SLS) silica nanowires

  • Jae Ho Lee (a1), Michael A. Carpenter (a1) and Robert E. Geer (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed