Skip to main content Accessibility help

A novel graphene modified LiMnPO4 as a performance-improved cathode material for lithium-ion batteries

  • Yong Jiang (a1), Ruizhe Liu (a1), Weiwen Xu (a1), Zheng Jiao (a1), Minghong Wu (a1), Yuliang Chu (a2), Ling Su (a3), Hui Cao (a3), Ming Hou (a3) and Bing Zhao (a4)...


A novel graphene-modified LiMnPO4 composite as a performance-improved cathode material for lithium-ion batteries has been prepared with LiH2PO4, Mn(CH3COO)2·4H2O, and graphite oxide (GO) suspension by spray-drying method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and galvanostatic charge–discharge tests are applied to characterize these materials. The structure analysis shows that LiMnPO4 sheets with width of 100–200 nm and thickness of 20–30 nm are attached to the graphene sheets in pieces. The graphene sheets with good electrical conductivity serve as a conducting network for fast electron transfer between the active materials and charge collector, as well as buffered spaces to accommodate the volume expansion/contraction during the discharge/charge process. The electrochemical tests show that the composite cathode material could deliver a capacity of 105.1 mAh/g at 0.05 C in the voltage range of 2.5–4.4 V. Moreover, the cells showed fair good cycle ability over 50 cycles.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).
2.Konarova, M. and Taniguchi, I.: Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties. Mater. Res. Bull. 43, 3305 (2008).
3.Wang, D., Buqa, H., Crouzet, M., Deghenghi, G., Drezen, T., Exnar, I., Kwon, N.H., Miners, J.H., Poletto, L., and Gratzel, M.: High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J. Power Sources 189, 624 (2009).
4.Delacourt, C., Laffont, L., and Bouchet, R.: Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 152, 913 (2005).
5.Zhou, F., Cococcioni, M., Kang, K., and Ceder, G.: The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni. Electrochem. Commun. 6, 1144 (2004).
6.Martha, S.K., Markovsky, B., Grinblat, J., Gofer, Y., Haik, O., Zinigrad, E., Aurbach, D., Drezen, T., Wang, D., Deghenghi, G., and Exnar, I.: LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J. Electrochem. Soc. 156, 541 (2009).
7.Doan, T.N.L., Bakenov, Z., and Taniguchi, I.: Preparation of carbon coated LiMnPO4 powders by a combination of spray pyrolysis with dry ball-milling followed by heat treatment. Adv. Powder Technol. 21, 187 (2010).
8.Delacourt, C., Poizot, P., Morcrette, M., Tarascon, J-M., and Masquelier, C.: One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater. 16, 93 (2004).
9.Drezen, T., Kwon, N-H., Bowen, P., Teerlinck, I., Isono, M., and Exnar, I.: Effect of particle size on LiMnPO4 cathodes. J. Power Sources 174, 949 (2007).
10.Shiratsuchi, T., Okada, S., Doi, T., and Jamaki, J.: Cathodic performance of LiMn1−xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere. Electrochim. Acta 11, 3145 (2009).
11.Dominko, R., Bele, M., and Gaberscek, M.: Porous olivine composites synthesized by sol-gel technique. J. Power Sources 153, 274 (2006).
12.Wang, H.L., Yang, Y., Liang, Y.Y., Cui, L.F., Casalongue, H.S., Li, Y.G., Hong, G.S., Cui, Y., and Dai, H.J.: LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem. Int. Ed. 50, 7364 (2011).
13.Wang, D., Ouyang, C., and Drézen, T.: Improving the electrochemical activity of LiMnPO4 via Mn-site substitution. J. Electrochem. Soc. 157, 225 (2010).
14.Paek, S.M., Yoo, E., and Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72 (2009).
15.Wang, D.H., Choi, D.W., and Li, J.: Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907 (2009).
16.Wu, Z.S., Ren, W.C., and Wen, L.: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187 (2010).
17.Jiang, Y., Xu, W.W., Chen, D.D., Jiao, Z., Zhang, H.J., Ma, Q.L., Cai, X.H., Zhao, B., and Chu, Y.L.: Graphene modified Li3V2(PO4)3 as a high-performance cathode material for lithium ion batteries. Electrochim. Acta 85, 377 (2012).
18.Zhou, X.F. and Liu, Z.P.: A scalable solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chem. Commun. 46, 2611 (2010).
19.Zhao, B., Liu, P., Jiang, Y., Pan, D.Y., Tao, H.H., Song, J.S., Fang, T., and Xu, W.W.: Supercapacitor performances of thermally reduced graphene oxide. J. Power Sources 198, 423 (2012).
20.Pan, D.Y., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y., and Jiao, Z.: Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136 (2009).
21.Shin, H.C., Cho, W.I., and Jang, H.: Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. J. Power Sources 159, 1383 (2006).
22.Zhao, B., Song, J.S., Liu, P., Xu, W.W., Fang, T., Jiao, Z., Zhang, H.J., and Jiang, Y.: Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. J. Mater. Chem. 21, 18792 (2011).
23.Ding, Y., Jiang, Y., and Xu, F.: Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem. Commun. 12, 10 (2010).
24.Qin, Z., Zhou, X., Xia, Y., Tang, C., and Liu, Z.: Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J. Mater. Chem. 22, 21144 (2012).

A novel graphene modified LiMnPO4 as a performance-improved cathode material for lithium-ion batteries

  • Yong Jiang (a1), Ruizhe Liu (a1), Weiwen Xu (a1), Zheng Jiao (a1), Minghong Wu (a1), Yuliang Chu (a2), Ling Su (a3), Hui Cao (a3), Ming Hou (a3) and Bing Zhao (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed