Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T01:59:15.520Z Has data issue: false hasContentIssue false

A novel and facile way to synthesize diamondoids nanowire cluster array

Published online by Cambridge University Press:  20 June 2019

Jilong Wang*
Affiliation:
Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People’s Republic of China; and Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
Jingjing Qiu*
Affiliation:
Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
Shiren Wang*
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, Texas 77843-3131, USA
*
a)Address all correspondence to these authors. e-mail: jenny.qiu@ttu.edu
b)e-mail: s.wang@tamu.edu
Get access

Abstract

Nowadays, hierarchical materials have received tremendous interests because of their unique physical and chemical properties. In this article, a novel and facile particle aggregation method was used to fabricate vertically aligned diamondoid nanowires and hierarchical branched nanowire cluster array by using an electrophoresis template method. Triamantane, a three-cage diamondoid, was applied as raw material in current research. Diamondoids are nanometer-sized, hydrogen-terminated diamond-like, saturated hydrocarbons, which process great potential in nanotechnology due to biocompatibility and ultrahard nature. By electrophoresis template method, triamantane molecules dissolved in toluene were transferred into a porous alumina template by electric field and form the one-dimensional (1D) nanostructure with high aspect ratio. After that, a two-step thermal treatment was applied to the nanowires to achieve hierarchical branched nanowires. The surface morphologies of triamantane nanowire array with different treatments were characterized by scanning electron microscopy. This approach opens a new avenue for mass production of the vertically aligned diamondoid nanowires and hierarchical branched nanowire cluster arrays.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Roth, S., Leuenberger, D., Osterwalder, J., Dahl, J.E., Carlson, R.M.K., Tkachenko, B.A., Fokin, A.A., Schreiner, P.R., and Hengsberger, M.: Negative-electron-affinity diamondoid monolayers as high-brilliance source for ultrashort electron pulses. Chem. Phys. Lett. 495, 102108 (2010).CrossRefGoogle Scholar
He, D., Huang, X., and Li, M.Q.: Hierarchical C–P(=O)(–O–)n(n ≤ 2)-linked nano-Si/N-doped C/graphene porous foam as anodes for high-performance lithium ion batteries. Carbon 141, 531541 (2019).CrossRefGoogle Scholar
Zhang, X., Ziemer, K.S., Zhang, K., Ramirez, D., Li, L., Wang, S.R., Hope-Weeks, L.J., and Weeks, B.L.: Large-area preparation of high-quality and uniform three-dimensional graphene networks through thermal degradation of graphene oxide-nitrocellulose composites. ACS Appl. Mater. Interfaces 7, 10571064 (2015).CrossRefGoogle ScholarPubMed
Zhang, X., Hikal, W.M., Zhang, Y., Bhattacharia, S.K., Li, L., Panditrao, S., Wang, S.R., and Weeks, B.L.: Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites. Appl. Phys. Lett. 102, 141905 (2013).CrossRefGoogle Scholar
Zhang, X., Ji, X., Su, R.F., Weeks, B.L., Zhang, Z., and Deng, S.L.: Aerobic oxidation of 9H-fluorenes to 9-fluorenones using mono-/multilayer graphene-supported alkaline catalyst. Chempluschem 78, 703711 (2013).CrossRefGoogle Scholar
Zhang, G.: Diamondoid molecules: With applications in biomedicine, materials science, nanotechnology and petroleum science. Phys. Today 66, 5960 (2013).CrossRefGoogle Scholar
Schnell, J.R. and Chou, J.J.: Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451, 591–U12 (2008).CrossRefGoogle ScholarPubMed
Fyta, M.: Stable boron nitride diamondoids as nanoscale materials. Nanotechnology 25, 365601 (2014).CrossRefGoogle ScholarPubMed
Richter, R., Wolter, D., Zimmermann, T., Landt, L., Knecht, A., Heidrich, C., Merli, A., Dopfer, O., Reiss, P., Ehresmann, A., Petersen, J., Dahl, J.E., Carlson, R.M.K., Bostedt, C., Moller, T., Mitric, R., and Rander, T.: Size and shape dependent photoluminescence and excited state decay rates of diamondoids. Phys. Chem. Chem. Phys. 16, 30703076 (2014).CrossRefGoogle ScholarPubMed
Xue, Y. and Mansoori, G.A.: Self-Assembly of diamondoid molecules and derivatives (MD simulations and DFT calculations). Int. J. Mol. Sci. 11, 288303 (2010).CrossRefGoogle Scholar
Fort, R.C. and Schleyer, P.V.: Adamantane: Consequences of diamondoid structure. Chem. Rev. 64, 277300 (1964).CrossRefGoogle Scholar
Zhou, Y.J., Brittain, A.D., Kong, D.Y., Xiao, M., Meng, Y.Z., and Sun, L.Y.: Derivatization of diamondoids for functional applications. J. Mater. Chem. C 3, 69476961 (2015).CrossRefGoogle Scholar
Dahl, J.E., Liu, S.G., and Carlson, R.M.K.: Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 9699 (2003).CrossRefGoogle ScholarPubMed
Lu, H.B., Wang, X., Yao, Y.T., Gou, J.H., Hui, D., Xu, B., and Fu, Y.Q.: Synergistic effect of siloxane modified aluminum nanopowders and carbon fiber on electrothermal efficiency of polymeric shape memory nanocomposite. Composites, Part B 80, 16 (2015).CrossRefGoogle Scholar
Choi, J.R., Rhee, K.Y., and Park, S.J.: Influence of electrolessly silver-plated multi-walled carbon nanotubes on thermal conductivity of epoxy matrix nanocomposites. Composites, Part B 80, 379384 (2015).CrossRefGoogle Scholar
Yamamoto, Y., Fukushima, T., Suna, Y., Ishii, N., Saeki, A., Seki, S., Tagawa, S., Taniguchi, M., Kawai, T., and Aida, T.: Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 17611764 (2006).CrossRefGoogle ScholarPubMed
Jiang, L., Dong, H.L., Meng, Q., Li, H.X., He, M., Wei, Z.M., He, Y.D., and Hu, W.P.: Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater. 23, 20592063 (2011).CrossRefGoogle ScholarPubMed
Li, L., Zhang, K., Qiu, J.J., Wang, S.R., Van, H.H., and Zhang, M.: Solution assembly of vertically aligned diamond nanotube arrays from diamond nanocrystals. Diamond Relat. Mater. 29, 7983 (2012).CrossRefGoogle Scholar
Janssen, W. and Gheeraert, E.: Dry etching of diamond nanowires using self-organized metal droplet masks. Diamond Relat. Mater. 20, 389394 (2011).CrossRefGoogle Scholar
Hsu, C.H., Cloutier, S.G., Palefsky, S., and Xu, J.: Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition. Nano Lett. 10, 32723276 (2010).CrossRefGoogle ScholarPubMed
Zhao, M.Q., Ren, C.E., Ling, Z., Lukatskaya, M.R., Zhang, C.F., Van Aken, K.L., Barsoum, M.W., and Gogotsi, Y.: Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339345 (2015).CrossRefGoogle ScholarPubMed
Mao, X.W., Simeon, F., Rutledge, G.C., and Hatton, T.A.: Electrospun carbon nanofiber webs with controlled density of states for sensor applications. Adv. Mater. 25, 13091314 (2013).CrossRefGoogle ScholarPubMed
Chandni, U., Kundu, P., Kundu, S., Ravishankar, N., and Ghosh, A.: Tunability of electronic states in ultrathin gold nanowires. Adv. Mater. 25, 24862491 (2013).CrossRefGoogle ScholarPubMed
Zhang, X., He, Y., Sushko, M.L., Liu, J., Luo, L.L., De Yoreo, J.J., Mao, S.X., Wang, C.M., and Rosso, K.M.: Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science 356, 434437 (2017).CrossRefGoogle Scholar
Zhang, X., Shen, Z., Liu, J., Kerisit, S.N., Bowden, M.E., Sushko, M.L., De Yoreo, J.J., and Rosso, K.M.: Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment. Nat. Commun. 8, 835 (2017).CrossRefGoogle ScholarPubMed
Singh, B.P., Nayak, S., Nanda, K.K., Jena, B.K., Bhattacharjee, S., and Besra, L.: The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon 61, 4756 (2013).CrossRefGoogle Scholar
Limmer, S.J., Seraji, S., Wu, Y., Chou, T.P., Nguyen, C., and Cao, G.Z.: Template-based growth of various oxide nanorods by sol–gel electrophoresis. Adv. Funct. Mater. 12, 5964 (2002).3.0.CO;2-B>CrossRefGoogle Scholar
Ye, E.Y., Regulacio, M.D., Zhang, S.Y., Loh, X.J., and Han, M.Y.: Anisotropically branched metal nanostructures. Chem. Soc. Rev. 44, 60016017 (2015).CrossRefGoogle ScholarPubMed
Hasan, M., Schroers, J., and Kumar, G.: Functionalization of metallic glasses through hierarchical patterning. Nano Lett. 15, 963968 (2015).CrossRefGoogle ScholarPubMed
Narasimha, K.T., Ge, C.H., Fabbri, J.D., Clay, W., Tkachenko, B.A., Fokin, A.A., Schreiner, P.R., Dahl, J.E., Carlson, R.M.K., Shen, Z.X., and Melosh, N.A.: Ultralow effective work function surfaces using diamondoid monolayers. Nat. Nanotechnol. 11, 267272 (2016).CrossRefGoogle ScholarPubMed
Yan, H., Hohman, J.N., Li, F.H., Jia, C.J., Solis-Ibarra, D., Wu, B., Dahl, J.E.P., Carlson, R.M.K., Tkachenko, B.A., Fokin, A.A., Schreiner, P.R., Vailionis, A., Kim, T.R., Devereaux, T.P., Shen, Z.X., and Melosh, N.A.: Hybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly. Nat. Mater. 16, 349355 (2017).CrossRefGoogle ScholarPubMed
Sarap, C.S., Partovi-Azar, P., and Fyta, M.: Enhancing the optical detection of mutants from healthy DNA with diamondoids. J. Mater. Chem. B 7, 34243430 (2019).CrossRefGoogle Scholar
Sarap, C.S., Partovi-Azar, P., and Fyta, M.: Optoelectronic properties of diamondoid-DNA complexes. ACS Appl. Bio Mater. 1, 5969 (2018).CrossRefGoogle Scholar
Zhang, Y., Lo, C.W., Taylor, J.A., and Yang, S.: Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity. Langmuir 22, 85958601 (2006).CrossRefGoogle ScholarPubMed
Mansoori, G.A.: Diamondoid molecules. Adv. Chem. Phys. 136, 207258 (2007).Google Scholar
Cao, H.Q., Xu, Y., Hong, J.M., Liu, H.B., Yin, G., Li, B.L., Tie, C.Y., and Xu, Z.: Sol–gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template. Adv. Mater. 13, 13931394 (2001).3.0.CO;2-C>CrossRefGoogle Scholar
Supplementary material: File

Wang et al. supplementary material

Figures S1-S3

Download Wang et al. supplementary material(File)
File 314.9 KB