Skip to main content Accessibility help
×
Home

Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode

  • Xiaotao Deng (a1), Sirui Li (a2), Jiaqi Wang (a2), Ding Nan (a2), Junhui Dong (a2) and Jun Liu (a2)...

Abstract

Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: nan1980732@163.com
b)e-mail: clxylj@163.com

References

Hide All
1.Manthiram, A.: Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 373 (2011).
2.Lu, L., Han, X., Li, J., Hua, J., and Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272 (2013).
3.Scrosati, B., Hassoun, J., and Sun, Y-K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287 (2011).
4.Shen, L., Chen, S., Maier, J., and Yu, Y.: Carbon-coated Li3VO4 spheres as constituents of an advanced anode material for high-rate long-life lithium-ion batteries. Adv. Mater. 29, 17015711701577 (2017).
5.Xu, X., Zhao, R., Ai, W., Chen, B., Du, H., Wu, L., Zhang, H., Huang, W., and Yu, T.: Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: Toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30, 18006581800664 (2018).
6.Lukatskaya, M.R., Dunn, B., and Gogotsi, Y.: Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 1264712659 (2016).
7.Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).
8.Ji, L., Lin, Z., Alcoutlabi, M., and Zhang, X.: Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682 (2011).
9.Jiaojiao, D., Xiaoliang, Y., Yanbing, H., Baohua, L., Quan-Hong, Y., and Feiyu, K.: A sliced orange-shaped ZnCo2O4 material as anode for high-performance lithium ion battery. Energy Storage Mater. 6, 61 (2017).
10.Sharma, Y., Sharma, N., Rao, G.V.S., and Chowdari, B.V.R.: Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2855 (2007).
11.Du, N., Xu, Y., Zhang, H., Yu, J., Zhai, C., and Yang, D.: Porous ZnCo2O4 nanowires synthesis via sacrificial templates: High-performance anode materials of Li-ion batteries. Inorg. Chem. 50, 3320 (2011).
12.Liu, H. and Wang, J.: One-pot synthesis of ZnCo2O4 nanorod anodes for high power lithium ions batteries. Electrochim. Acta 92, 371 (2013).
13.Luo, W., Hu, X., Sun, Y., and Huang, Y.: Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 22, 8916 (2012).
14.Wang, Z., Zhou, L., and Lou, X.W.: Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24, 1903 (2012).
15.Zhu, Y., Cao, C., Zhang, J., and Xu, X.: Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 3, 9556 (2015).
16.Zhao, Y., Li, X., Yan, B., Xiong, D., Li, D., Lawes, S., and Sun, X.: Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6, 1502175 (2016).
17.Mei, J., Liao, T., Kou, L., and Sun, Z.: Two-Dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv. Mater. 29, 1700176 (2017).
18.Mei, J., Liao, T., Spratt, H., Ayoko, G.A., Zhao, X., and Sun, Z.: Honeycomb-inspired heterogeneous bimetallic Co–Mo oxide nanoarchitectures for high-rate electrochemical lithium storage. Small Methods 3, 1900055 (2019).
19.Rai, A.K., Trang Vu, T., Paul, B.J., and Kim, J.: Synthesis of nano-sized ZnCo2O4 anchored with graphene nanosheets as an anode material for secondary lithium ion batteries. Electrochim. Acta 146, 577 (2014).
20.Liu, B., Wang, X., Liu, B., Wang, Q., Tan, D., Song, W., Hou, X., Chen, D., and Shen, G.: Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 6, 525 (2013).
21.Ru, Q., Song, X., Mo, Y., Guo, L., and Hu, S.: Carbon nanotubes modified for ZnCo2O4 with a novel porous polyhedral structure as anodes for lithium ion batteries with improved performances. J. Alloys Compd. 654, 586 (2016).
22.Chunshuang, Y., Yue, Z., Yutao, L., Zhiwei, F., Lele, P., Xin, Z., Gang, C., and Guihua, Y.: Local built-in electric field enabled in carbon-doped Co3O4 nanocrystals for superior lithium-ion storage. Adv. Funct. Mater. 28, 1705951 (2018).
23.Subburaj, T., Prasanna, K., Kim, K.J., Ilango, P.R., Jo, Y.N., and Lee, C.W.: Structural and electrochemical evaluation of bismuth doped lithium titanium oxides for lithium ion batteries. J. Power Sources 280, 23 (2015).
24.Xu, J., Liao, Z., Zhang, J., Gao, B., Chu, P.K., and Huo, K.: Heterogeneous phosphorus-doped WO3−x/nitrogen-doped carbon nanowires with high rate and long life for advanced lithium-ion capacitors. J. Mater. Chem. A 6, 6916 (2018).
25.Wang, Y., Xue, X., Liu, P., Wang, C., Yi, X., Hu, Y., Ma, L., Zhu, G., Chen, R., and Chen, T.: Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2−x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 12, 12492 (2018).
26.Wu, G., Jia, Z., Cheng, Y., Zhang, H., Zhou, X., and Wu, H.: Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472 (2019).
27.Xu, M., He, S., Chen, H., Cui, G., Zheng, L., Wang, B., and Wei, M.: TiO2−x-modified ni nanocatalyst with tunable metal–support interaction for water–gas shift reaction. ACS Catal. 7, 7600 (2017).
28.Liu, S., Zhou, J., and Song, H.: 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 8, 1800569 (2018).
29.Huang, X., Xia, X., Yuan, Y., and Zhou, F.: Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim. Acta 56, 4960 (2011).
30.Das, B., Reddy, M., Rao, G.S., and Chowdari, B.: Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries. J. Mater. Chem. 22, 17505 (2012).
31.Das, B., Reddy, M., Malar, P., Osipowicz, T., Rao, G.S., and Chowdari, B.: Nanoflake CoN as a high capacity anode for Li-ion batteries. Solid State Ionics 180, 1061 (2009).
32.Deng, J., Yu, X., Qin, X., Li, B., and Kang, F.: Carbon sphere-templated synthesis of porous yolk–shell ZnCo2O4 spheres for high-performance lithium storage. J. Alloys Compd. 780, 65 (2019).
33.Deng, J., Yu, X., Qin, X., Zhou, D., Zhang, L., Duan, H., Kang, F., Li, B., and Wang, G.: Co–B nanoflakes as multifunctional bridges in ZnCo2O4 micro-/nanospheres for superior lithium storage with boosted kinetics and stability. Adv. Energy Mater. 9, 1803612 (2019).
34.Deng, J., Yu, X., Qin, X., Liu, B., He, Y-B., Li, B., and Kang, F.: Controlled synthesis of anisotropic hollow ZnCo2O4 octahedrons for high-performance lithium storage. Energy Storage Mater. 11, 184 (2018).
35.Deng, J., Yu, X., He, Y., Li, B., Yang, Q-H., and Kang, F.: A sliced orange-shaped ZnCo2O4 material as anode for high-performance lithium ion battery. Energy Storage Mater. 6, 61 (2017).
36.Jiang, Y., Song, Y., Pan, Z., Meng, Y., Jiang, L., Wu, Z., Yang, P., Gu, Q., Sun, D., and Hu, L.: Rapid amorphization in metastable CoSeO3·H2O nanosheets for ultrafast lithiation kinetics. ACS Nano 12, 5011 (2018).
37.Li, Y., Zhao, Y., Ma, C., and Zhao, Y.: Promising carbon matrix derived from willow catkins for the synthesis of SnO2/C composites with enhanced electrical performance for Li-ion batteries. Nano 13, 1850087 (2018).

Keywords

Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode

  • Xiaotao Deng (a1), Sirui Li (a2), Jiaqi Wang (a2), Ding Nan (a2), Junhui Dong (a2) and Jun Liu (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed