Skip to main content Accessibility help
×
Home

A nitrogen-doped electrocatalyst from metal–organic framework-carbon nanotube composite

  • Lei Ge (a1), Rijia Lin (a2), Zhonghua Zhu (a2) and Hao Wang (a3)

Abstract

Replacing precious and nondurable platinum-based catalysts by economical and commercially available materials is a key issue addressed in contemporary fuel cell technology. Carbon-based nanomaterials display great potential to improve fuel tolerance and reduce the cost and stress on metal scalability. However, their relatively low catalytic activity limits the development and application of these catalysts. In this study, we have synthesized a nitrogen-doped carbon electrocatalyst from metal–organic frameworks and carbon nanotube composites, taking advantage of the existing N in the organic linker in the MOFs with more N added through ammonia treatment. The morphology and composition of synthesized catalysts were characterized by SEM, TEM, XPS, and Raman. The derived catalyst exhibited superior catalytic activity than that of commercial Pt-based catalysts. The N enriched carbon catalyst with high surface area, a graphitic carbon skeleton, and a hierarchical porous structure facilitated the mass and charge transfer during electrolysis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A nitrogen-doped electrocatalyst from metal–organic framework-carbon nanotube composite
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A nitrogen-doped electrocatalyst from metal–organic framework-carbon nanotube composite
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A nitrogen-doped electrocatalyst from metal–organic framework-carbon nanotube composite
      Available formats
      ×

Copyright

Corresponding author

a) Address all correspondence to these authors. e-mail: lei.ge@usq.edu.au
b) e-mail: hao.wang@usq.edu.au

Footnotes

Hide All

Contributing Editor: Chuan Zhao

Footnotes

References

Hide All
1. Jaouen, F., Proietti, E., Lefevre, M., Chenitz, R., Dodelet, J-P., Wu, G., Chung, H.T., Johnston, C.M., and Zelenay, P.: Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114 (2011).
2. Li, Y., Zhou, W., Wang, H., Xie, L., Liang, Y., Wei, F., Idrobo, J-C., Pennycook, S.J., and Dai, H.: An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nat. Nanotechnol. 7, 394 (2012).
3. Su, D.S., Zhang, J., Frank, B., Thomas, A., Wang, X., Paraknowitsch, J., and Schlögl, R.: Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 3(2), 169 (2010).
4. Qu, L., Liu, Y., Baek, J-B., and Dai, L.: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321 (2010).
5. Yang, S., Feng, X., Wang, X., and Müllen, K.: Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem., Int. Ed. 50, 5339 (2011).
6. Liu, Z-W., Peng, F., Wang, H-J., Yu, H., Zheng, W-X., and Yang, J.: Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem., Int. Ed. 50, 3257 (2011).
7. Gong, K., Du, F., Xia, Z., Durstock, M., and Dai, L.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009).
8. Yang, S., Zhi, L., Tang, K., Feng, X., Maier, J., and Müllen, K.: Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 22, 3634 (2012).
9. Silva, R., Voiry, D., Chhowalla, M., and Asefa, T.: Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N- and O-doped mesoporous carbons. J. Am. Chem. Soc. 135, 7823 (2013).
10. Tang, J. and Yamauchi, Y.: Carbon materials: MOF morphologies in control. Nat. Chem. 8, 638 (2016).
11. Liu, B., Shioyama, H., Akita, T., and Xu, Q.: Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390 (2008).
12. Xia, W., Mahmood, A., Zou, R., and Xu, Q.: Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837 (2015).
13. Zhong, H-x., Wang, J., Zhang, Y-w., Xu, W-l., Xing, W., Xu, D., Zhang, Y-f., and Zhang, X-b.: ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 53, 14235 (2014).
14. Wei, J., Hu, Y., Liang, Y., Kong, B., Zhang, J., Song, J., Bao, Q., Simon, G.P., Jiang, S.P., and Wang, H.: Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 25, 5768 (2015).
15. Liu, S., Tong, M., Liu, G., Zhang, X., Wang, Z., Wang, G., Cai, W., Zhang, H., and Zhao, H.: S,N-containing Co-MOF derived Co9S8@S,N-doped carbon materials as efficient oxygen electrocatalysts and supercapacitor electrode materials. Inorg. Chem. Front. 4, 491 (2017).
16. Wang, W., Xu, X., Zhou, W., and Shao, Z.: Recent progress in metal–organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 4, 1600371 (2017).
17. Ge, L., Yang, Y., Wang, L., Zhou, W., De Marco, R., Chen, Z., Zou, J., and Zhu, Z.: High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon 82, 417 (2015).
18. Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y-S., Lee, T.R., Colbert, D.T., and Smalley, R.E.: Fullerene pipes. Science 280, 1253 (1998).
19. Jiang, H-L., Liu, B., Lan, Y-Q., Kuratani, K., Akita, T., Shioyama, H., Zong, F., and Xu, Q.: From metal–organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854 (2011).
20. Hermes, S., Schröder, F., Chelmowski, R., Wöll, C., and Fischer, R.A.: Selective nucleation and growth of metal–organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744 (2005).
21. Shoaee, M., Anderson, M.W., and Attfield, M.P.: Crystal growth of the nanoporous metal–organic framework HKUST-1 revealed by in situ atomic force microscopy. Angew. Chem., Int. Ed. 47, 8525 (2008).
22. Scherb, C., Schödel, A., and Bein, T.: Directing the structure of metal–organic frameworks by oriented surface growth on an organic monolayer. Angew. Chem., Int. Ed. 47, 5777 (2008).
23. Yang, Y., Ge, L., Rudolph, V., and Zhu, Z.: In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. Dalton Trans. 43, 7028 (2014).
24. Lai, L., Potts, J.R., Zhan, D., Wang, L., Poh, C.K., Tang, C., Gong, H., Shen, Z., Lin, J., and Ruoff, R.S.: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936 (2012).
25. Wang, L., Ambrosi, A., and Pumera, M.: “Metal-free” catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities. Angew. Chem., Int. Ed. 52, 13818 (2013).
26. Liang, J., Zheng, Y., Chen, J., Liu, J., Hulicova-Jurcakova, D., Jaroniec, M., and Qiao, S.Z.: Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem., Int. Ed. 51, 3892 (2012).
27. Yang, S., Feng, X.L., Wang, X.C., and Mullen, K.: Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem., Int. Ed. 123, 5451 (2011).
28. Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., and Dai, H.: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780 (2011).
29. Chung, H.T., Won, J.H., and Zelenay, P.: Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 4, 1922 (2013).

Keywords

Type Description Title
WORD
Supplementary materials

Ge et al supplementary material
Ge et al supplementary material 1

 Word (3.1 MB)
3.1 MB

A nitrogen-doped electrocatalyst from metal–organic framework-carbon nanotube composite

  • Lei Ge (a1), Rijia Lin (a2), Zhonghua Zhu (a2) and Hao Wang (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed