Skip to main content Accessibility help
×
Home

New perspective in degradation mechanism of SrTiO3:Pr,Al,Ga phosphors

  • Jin Young Kim (a1), Yong Chan You (a1), Jong Hyuk Kang (a1), Duk Young Jeon (a1) and Jörg Weber (a2)...

Abstract

Under prolonged electron-beam exposure, perovskite-structured SrTiO3:Pr,Al,Ga (STO) phosphor can be easily reduced due to oxygen loss. In particular, it is well known that dissociative H2O molecules are well adsorbed on reduced STO surfaces. The hydroxyl species produced by such dissociative adsorption of H2O strongly decompose organic compounds chemisorbed on the surface from vacuum ambient used in display devices into carbon species due to the photocatalytic properties of STO. Consequently, it is very likely that this mechanism attributes to the larger amounts of carbon adsorption by electron-stimulated chemical reactions on the STO phosphor surface than other phosphors.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: tg2som@naver.com

References

Hide All
1.Ozawa, L.Application of Cathodoluminescence to Display Devices (Kodansha, Tokyo, Japan, 1994).
2.Justel, T. andNikol, H.: Optimization of luminescent materials for plasma display panels. Adv. Mater 12, 527 (2000).
3.Klaassen, D.B.M. andde Leeuw, D.M.: Degradation of phosphors under cathode-ray excitation. J. Lumin 37, 21 (1987).
4.Shionoya, S. andYen, W.M.Phosphor Handbook (CRC Press, Boca Raton, FL, 1999).
5.Swart, H.C., Trottier, T.A., Sebastian, J.S., Jones, S.L. andHolloway, P.H.: Degradation of zinc sulfide phosphors under electron bombardment. J. Vac. Sci. Technol. A 14, 1697 (1996).
6.Itoh, S., Kimizuka, T. andTonegawa, T.: Degradation mechanism for low voltage cathodoluminescence of sulfide phosphors. J. Electrochem. Soc. 136, 1819 (1989).
7.Itoh, S., Yokoyama, M. andMorimoto, K.: Poisonous gas effects on the emission of oxide-coated cathodes. J. Vac. Sci. Technol. A 5, 3430 (1987).
8.Yokoyama, M. andYang, S.: Red SrTiO3:Pr,Al phosphor as potential field emission display material. J. Vac. Sci. Technol. A 18, 2472 (2000).
9.Itoh, S., Toki, H., Tamura, K. andKataoka, F.: A new red-emitting phosphor SrTiO3:Pr3+, for low-voltage electron excitation. Jpn. J. Appl. Phys. Part I 38, 6387 (1999).
10.Okamoto, S., Kobayashi, H. andYamamoto, H.: Enhancement of characteristic red emission from SrTiO3:Pr3+ by Al addition. J. Appl. Phys. 86, 5594 (1999).
11.Kiyoshi, Tamura and Hitoshi, Toki: Fluorescent Material and Display Tube. Japanese Patent No.10-273658 (1998).
12.Kim, J.Y., You, Y.C., Jeon, D.Y., Yu, I. andYang, H.-G.: A study on the degradation of cathodoluminescence of SrTiO3:Pr,Al,Ga phosphors tailored for low voltage display applications. J. Electrochem. Soc. 149 H44 (2002).
13.You, Y.C., Kim, J.Y., Jeon, D.Y., Park, K.C., Lee, S.H., and Yu, I.: XPS observations of deterioration of SrTiO3: Pr, Al, GA phosphor by low voltage electron irradiation, in The 2nd International Display Manufacturing Conference & Exhibition, Seoul, Korea, (2002), p. 281.
14.Seager, C.H., Tallant, D.R. andWarren, W.L.: Cathodoluminescence, reflectivity changes, and accumulation of graphitic carbon during electron beam aging of phosphors. J. Appl. Phys. 82, 4515 (1997).
15.Nagarkar, P.V., Searson, P.C. andGealy, F.D.: Effect of surface treatment on SrTiO3: An x-ray photoelectron spectroscopic study. J. Appl. Phys. 69, 459 (1991).
16.Sayers, C.N. andArmstrong, N.R.: X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: Surface compositional changes of the TiO2 electrode during photoelectrolysis. Surf. Sci. 77, 301 (1978).
17.Knotek, M.L.: Characterization of hydrogen species on metal oxide surfaces by electron-stimulated desorption: TiO2 and SrTiO3. Surf. Sci. 101, 334 (1980).
18.Wang, L-Q., Ferris, K.F. andHerman, G.S.: Interactions of H2O with SrTiO3 (100) surfaces. J. Vac. Sci. Technol. A 20, 239 (2002).
19.Wrington, M.S., Ellis, A.B., Wolcznski, P.T., Morse, D.L., Abrahamson, H.B. andGin, D.S.: Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 98, 2774 (1976).
20.Cox, P.A., Egdell, R.G. andNaylor, P.D.: HREELS studies of adsorbates on polar solids: Water on SrTiO3 (100). J. Electron. Spectrosc. Relat. Phenom 29, 247 (1983).
21.Henrich, V.E., Dresselhaus, G. andZeiger, H.J.: Chemisorbed phases of H2O on TiO2 and SrTiO3. Solid State Commun. 24, 623 (1977).
22.Webb, C. andLichtensteiger, M.: UPS/XPS study of reactive and non-reactive SrTiO3 (100) surfaces: Adsorption of H2O. Surf. Sci. 107 L345 (1981).
23.Ferrer, S. andSomorjai, G.A.: Isotope exchange studies of the oxidation and reduction of SrTiO3 single crystal surfaces by water and hydrogen. Surf. Sci. 97 L304 (1980).
24.Lo, W.J. andSomorjai, G.A.: Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3 (111) crystal face: Low-energy-electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies. Phys. Rev. B 17, 4942 (1978).
25.Schwoebel, P.R., Pearson, E.M., Lau, K-H., Lowe, D.H. andSanjuro, A.: Lifetime extension of cathodoluminescent P-1 phosphor. Electrochem. Solid-State Lett 1, 102 (1998).
26.Fujishima, A. andHonda, K.: Electrochemical photocatalysis of water at a semiconductor electrode. Nature 238, 37 (1972).
27.Hoffmann, M.R., Martin, S.T., Choi, W. andBahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).
28.Heller, A.: Chemistry and applications of photocatalytic oxidation of thin organic films. Acc. Chem. Res. 28, 503 (1995).
29.Ohko, Y., Hashimoto, K. andFujishima, A.: Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J. Phys. Chem. A 101, 8057 (1997).
30.Mills, A. andHunte, S.L.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A: Chem 108, 1 (1997).
31.Marroides, J.G., Kafalas, J.A. andKolisar, D.F.: Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241 (1976).
32.Wrighton, M.S., Wolczanski, P.T. andEllis, A.B.: Photoelectrolysis of water by irradiation of platinized n-type semiconducting metal oxide. J. Solid State Chem. 22, 17 (1977).
33.Miyauchi, M., Nakajima, A., Fujishima, A., Hashimoto, K. andWatanabe, T.: Photoinduced surface reactions on TiO2 and SrTiO3 films: Photocatalytic oxidation and photoinduced hydrophilicity. Chem. Mater. 12, 3 (2000).
34.Mens, A.J.M. andGijzeman, O.L.J.: AES study of electron beam induced damage on TiO2 surfaces. Appl. Surf. Sci. 99, 133 (1996).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed