Skip to main content Accessibility help
×
Home

N-doped ordered mesoporous carbon prepared by solid–solid grinding for supercapacitors

  • Juan Du (a1), Ran Liu (a1), Yifeng Yu (a1), Yue Zhang (a1), Yexin Zhang (a2) and Aibing Chen (a3)...

Abstract

N-doped ordered mesoporous carbon (N-OMC) has been one of the most promising choices as the electrode for supercapacitors due to its large surface area and uniform mesoporous structure. However, there is still a big challenge to prepare N-OMC using a relatively simple method. Here, a straightforward preparation of N-OMC was reported in which the precursor zeoliticimidazolate framework was in situ grown in the SBA-15 template by a fast, solvent-free, and atom economic solid–solid grinding strategy. After pyrolysis and removing of the template, the N-OMC was obtained with ordered mesoporous structure, rich oxygen and nitrogen, and a large specific surface area of 1004 m2/g. As the electrode material for supercapacitors, N-OMC displayed an excellent specific capacitance of 228 F/g at 0.2 A/g and superb charge/discharge cycling stability, which is promising for high-performance energy storage. This solid–solid grinding strategy may offer a low-cost and scalable method to produce high-performance N-OMC for the electrode from the zeoliticimidazolate framework.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: zhangyexin@nimte.ac.cn
b)e-mail: chen_ab@163.com

References

Hide All
1.Salunkhe, R.R., Tang, J., Kamachi, Y., Nakato, T., Kim, J.H., and Yamauchi, Y.: Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9, 6288 (2015).
2.Wei, J., Zhou, D., Sun, Z., Deng, Y., Xia, Y., and Zhao, D.: A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23, 2322 (2013).
3.Tang, D., Hu, S., Dai, F., Yi, R., Gordin, M.L., Chen, S., Song, J., and Wang, D.: Self-templated synthesis of mesoporous carbon from carbon tetrachloride precursor for supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 6779 (2016).
4.Ma, J., Ren, Y., Zhou, X., Liu, L., Zhu, Y., Cheng, X., Xu, P., Li, X., Deng, Y., and Zhao, D.: Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: Gas sensing performance and mechanism study. Adv. Funct. Mater. 28, 1705268 (2018).
5.Wei, J., Sun, Z., Luo, W., Li, Y., Elzatahry, A.A., Al-Enizi, A.M., Deng, Y., and Zhao, D.: New insight into the synthesis of large-pore ordered mesoporous materials. J. Am. Chem. Soc. 139, 1706 (2017).
6.Chen, W., Shi, J., Zhu, T., Wang, Q., Qiao, J., and Zhang, J.: Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability. Electrochim. Acta 177, 327 (2015).
7.Cai, T., Zhou, M., Ren, D., Han, G., and Guan, S.: Highly ordered mesoporous phenol–formaldehyde carbon as supercapacitor electrode material. J. Power Sources 231, 197 (2013).
8.Zhu, Y., Zhao, Y., Ma, J., Cheng, X., Xie, J., Xu, P., Liu, H., Liu, H., Zhang, H., Wu, M., Elzatahry, A.A., Alghamdi, A., Deng, Y., and Zhao, D.: Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J. Am. Chem. Soc. 139, 10365 (2017).
9.Yang, D.S., Bhattacharjya, D., Inamdar, S., Park, J., and Yu, J.S.: Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 134, 16127 (2012).
10.Yue, Q., Zhang, Y., Jiang, Y., Li, J., Zhang, H., Yu, C., Elzatahry, A.A., Alghamdi, A., Deng, Y., and Zhao, D.: Nanoengineering of core–shell magnetic mesoporous microspheres with tunable surface roughness. J. Am. Chem. Soc. 139, 4954 (2017).
11.Yue, Q., Li, J., Zhang, Y., Cheng, X., Chen, X., Pan, P., Su, J., Elzatahry, A.A., Alghamdi, A., Deng, Y., and Zhao, D.: Plasmolysis-inspired nanoengineering of functional yolk–shell microspheres with magnetic core and mesoporous silica shell. J. Am. Chem. Soc. 139, 15486 (2017).
12.Hu, Y., Liu, H., Ke, Q., and Wang, J.: Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. J. Mater. Chem. A. 2, 11753 (2014).
13.Dai, J-T., Zhang, Y., Li, H-C., Deng, Y-H., Elzatahry, A.A., Alghamdi, A., Fu, D-L., Jiang, Y-J., and Zhao, D-Y.: Enhancement of gemcitabine against pancreatic cancer by loading in mesoporous silica vesicles. Chin. Chem. Lett. 28, 531 (2017).
14.Liu, Y., Wang, Z., Teng, W., Zhu, H., Wang, J., Elzatahry, A.A., Al-Dahyan, D., Li, W., Deng, Y., and Zhao, D.: A template-catalyzed in situ polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. J. Mater. Chem. A. 6, 3162 (2018).
15.Wu, Z-S., Feng, X., and Cheng, H-M.: Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 1, 277 (2014).
16.Wang, Y., Zhang, C., Kang, S., Li, B., Wang, Y., Wang, L., and Li, X.: Simple synthesis of graphitic ordered mesoporous carbon supports using natural seed fat. J. Mater. Chem. 21, 14420 (2011).
17.Dong, Y., Wu, Z-S., Ren, W., Cheng, H-M., and Bao, X.: Graphene: A promising 2D material for electrochemical energy storage. Sci. Bull. 62, 724 (2017).
18.Zheng, S., Wu, Z-S., Wang, S., Xiao, H., Zhou, F., Sun, C., Bao, X., and Cheng, H-M.: Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Mater. 6, 70 (2017).
19.Wang, Y., Li, B., Zhang, C., Song, X., Tao, H., Kang, S., and Li, X.: A simple solid–liquid grinding/templating route for the synthesis of magnetic iron/graphitic mesoporous carbon composites. Carbon 51, 397 (2013).
20.Zhou, X., Cheng, X., Zhu, Y., Elzatahry, A.A., Alghamdi, A., Deng, Y., and Zhao, D.: Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett. 29, 405 (2018).
21.Xiao, H., Wu, Z.S., Chen, L., Zhou, F., Zheng, S., Ren, W., Cheng, H.M., and Bao, X.: One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11, 7284 (2017).
22.Wang, Y., Li, B., Zhang, C., Tao, H., Kang, S., Jiang, S., and Li, X.: Simple synthesis of metallic Sn nanocrystals embedded in graphitic ordered mesoporous carbon walls as superior anode materials for lithium ion batteries. J. Power Sources 219, 89 (2012).
23.Yue, W. and Zong, W.: Synthesis of porous single crystals of metal oxides via a solid–liquid route. Chem. Mater. 19, 2359 (2007).
24.Jiang, Q., Wu, Z.Y., Wang, Y.M., Cao, Y., Zhou, C.F., and Zhu, J.H.: Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. J. Mater. Chem. 16, 1536 (2006).
25.Qin, J., Zhou, F., Xiao, H., Ren, R., and Wu, Z-S.: Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. Sci. China Mater. 61, 233 (2017).
26.Matter, P., Zhang, L., and Ozkan, U.: The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal. 239, 83 (2006).
27.Deng, Y., Xie, Y., Zou, K., and Ji, X.: Review on recent advances in nitrogen-doped carbons: Preparations and applications in supercapacitors. J. Mater. Chem. A 4, 1144 (2016).
28.Wu, R., Qian, X., Rui, X., Liu, H., Yadian, B., Zhou, K., Wei, J., Yan, Q., Feng, X.Q., Long, Y., Wang, L., and Huang, Y.: Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10, 1932 (2014).
29.Katsenis, A.D., Puskaric, A., Strukil, V., Mottillo, C., Julien, P.A., Uzarevic, K., Pham, M.H., Do, T.O., Kimber, S.A., Lazic, P., Magdysyuk, O., Dinnebier, R.E., Halasz, I., and Friscic, T.: In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal–organic framework. Nat. Commun. 6, 6662 (2015).
30.Wei, F., Jiang, J., Yu, G., and Sui, Y.: A novel cobalt–carbon composite for the electrochemical supercapacitor electrode material. Mater. Lett. 146, 20 (2015).
31.Chen, A., Yu, Y., Wang, R., Yu, Y., Zang, W., Tang, P., and Ma, D.: Nitrogen-doped dual mesoporous carbon for the selective oxidation of ethylbenzene. Nanoscale 7, 14684 (2015).
32.Katiyar, A., Yadav, S., Smirniotis, P.G., and Pinto, N.G.: Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J. Chromatogr. A 1122, 13 (2006).
33.Wang, Y.M., Wu, Z.Y., Shi, L.Y., and Zhu, J.H.: Rapid functionalization of mesoporous materials: Directly dispersing metal oxides into as-prepared SBA-15 occluded with template. Adv. Mater. 17, 323 (2005).
34.Zhang, D., Shi, H., Zhang, R., Zhang, Z., Wang, N., Li, J., Yuan, B., Bai, H., and Zhang, J.: Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv. 5, 58772 (2015).
35.Lin, K.Y. and Chang, H.A.: Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 139, 624 (2015).
36.Li, X., Gao, X., Ai, L., and Jiang, J.: Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 274, 238 (2015).
37.Lin, K-Y.A. and Chang, H-A.: Zeolitic imidazole framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of rhodamine B in water. J. Taiwan Inst. Chem. Eng. 53, 40 (2015).
38.Andrew Lin, K-Y. and Lee, W-D.: Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chem. Eng. J. 284, 1017 (2016).
39.Park, Y., Shin, W.S., and Choi, S-J.: Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15): An efficient ion exchanger for cesium ion. Chem. Eng. J. 220, 204 (2013).
40.Chen, A., Yu, Y., Li, Y., Li, Y., and Jia, M.: Solid-state grinding synthesis of ordered mesoporous MgO/carbon spheres composites for CO2 capture. Mater. Lett. 164, 520 (2016).
41.Wu, R., Wang, D.P., Han, J., Liu, H., Zhou, K., Huang, Y., Xu, R., Wei, J., Chen, X., and Chen, Z.: A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks. Nanoscale 7, 965 (2015).
42.Long, C., Jiang, L., Wu, X., Jiang, Y., Yang, D., Wang, C., Wei, T., and Fan, Z.: Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon 93, 412 (2015).
43.Qian, J., Sun, F., and Qin, L.: Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 82, 220 (2012).
44.Yang, J., Zhang, F., Lu, H., Hong, X., Jiang, H., Wu, Y., and Li, Y.: Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 54, 10889 (2015).
45.Sun, Q., Li, W.C., and Lu, A.H.: Insight into structure-dependent self-activation mechanism in a confined nanospace of core–shell nanocomposites. Small 9, 2086 (2013).
46.Bazzi, K., Dhindsa, K.S., Dixit, A., Sahana, M.B., Sudakar, C., Nazri, M., Zhou, Z., Vaishnava, P., Naik, V.M., Nazri, G.A., and Naik, R.: Nanostructured high specific capacity C-LiFePO4 cathode material for lithium-ion batteries. J. Mater. Res. 27, 424 (2011).
47.Yan, Y., Cheng, Q., Wang, G., and Li, C.: Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. J. Power Sources 196, 7835 (2011).
48.Hou, Y., Wen, Z., Cui, S., Ci, S., Mao, S., and Chen, J.: An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 25, 872 (2015).
49.Zhao, X., Zhang, Q., Chen, C-M., Zhang, B., Reiche, S., Wang, A., Zhang, T., Schlögl, R., and Sheng Su, D.: Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy 1, 624 (2012).
50.Wang, Q., Yan, J., Wei, T., Feng, J., Ren, Y., Fan, Z., Zhang, M., and Jing, X.: Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60, 481 (2013).
51.Nasini, U.B., Bairi, V.G., Ramasahayam, S.K., Bourdo, S.E., Viswanathan, T., and Shaikh, A.U.: Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. J. Power Sources 250, 257 (2014).
52.Huang, C-W., Hsu, C-H., Kuo, P-L., Hsieh, C-T., and Teng, H.: Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon 49, 895 (2011).
53.Jiang, H.L., Liu, B., Lan, Y.Q., Kuratani, K., Akita, T., Shioyama, H., Zong, F., and Xu, Q.: From metal–organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854 (2011).
54.Ye, G., Zhu, X., Chen, S., Li, D., Yin, Y., Lu, Y., Komarneni, S., and Yang, D.: Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage. J. Mater. Chem. A. 5, 8247 (2017).
55.Li, O.L., Chiba, S., Wada, Y., Panomsuwan, G., and Ishizaki, T.: Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction. J. Mater. Chem. A 5, 2073 (2017).
56.Tian, W., Zhang, H., Sun, H., Tadé, M.O., and Wang, S.: Template-free synthesis of N-doped carbon with pillared-layered pores as bifunctional materials for supercapacitor and environmental applications. Carbon 118, 98 (2017).
57.Jiang, H., Lee, P.S., and Li, C.: 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6, 41 (2013).
58.Kim, B-H., Yang, K.S., and Ferraris, J.P.: Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors. Electrochim. Acta 75, 325 (2012).
59.Chaikittisilp, W., Hu, M., Wang, H., Huang, H.S., Fujita, T., Wu, K.C., Chen, L.C., Yamauchi, Y., and Ariga, K.: Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem. Commun. 48, 7259 (2012).
60.Cheng, P., Li, T., Yu, H., Zhi, L., Liu, Z., and Lei, Z.: Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J. Phys. Chem. C 120, 2079 (2016).
61.Jiang, H., Li, C., Sun, T., and Ma, J.: A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 4, 807 (2012).
62.Xiong, W., Liu, M., Gan, L., Lv, Y., Li, Y., Yang, L., Xu, Z., Hao, Z., Liu, H., and Chen, L.: A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes. J. Power Sources 196, 10461 (2011).
63.Li, Q., Jiang, R., Dou, Y., Wu, Z., Huang, T., Feng, D., Yang, J., Yu, A., and Zhao, D.: Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49, 1248 (2011).
64.Bhattacharjya, D., Kim, M-S., Bae, T-S., and Yu, J-S.: High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J. Power Sources 244, 799 (2013).
65.Zhou, D-D., Li, W-Y., Dong, X-L., Wang, Y-G., Wang, C-X., and Xia, Y-Y.: A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors. J. Mater. Chem. A. 1, 8488 (2013).
66.Jiang, H., Yang, L., Li, C., Yan, C., Lee, P.S., and Ma, J.: High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ. Sci. 4, 1813 (2011).
67.Seredych, M. and Bandosz, T.J.: S-doped micro/mesoporous carbon–graphene composites as efficient supercapacitors in alkaline media. J. Mater. Chem. A. 1, 11717 (2013).
68.Lv, Y., Zhang, F., Dou, Y., Zhai, Y., Wang, J., Liu, H., Xia, Y., Tu, B., and Zhao, D.: A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J. Mater. Chem. 22, 93 (2012).
69.Lei, Z., Christov, N., Zhang, L.L., and Zhao, X.S.: Mesoporous carbon nanospheres with an excellent electrocapacitive performance. J. Mater. Chem. 21, 2274 (2011).
70.Li, M. and Xue, J.: Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J. Phys. Chem. C 118, 2507 (2014).
71.Sun, L., Tian, C., Li, M., Meng, X., Wang, L., Wang, R., Yin, J., and Fu, H.: From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A. 1, 6462 (2013).
72.Zhi, J., Zhao, W., Liu, X., Chen, A., Liu, Z., and Huang, F.: Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor. Adv. Funct. Mater. 24, 2013 (2014).
73.Cai, J.J., Kong, L.B., Zhang, J., Luo, Y.C., and Kang, L.: A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor. Chin. Chem. Lett. 21, 1509 (2010).
74.Wang, Y-Y., Hou, B-H., , H-Y., Wan, F., Wang, J., and Wu, X-L.: Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. RSC Adv. 5, 97427 (2015).
75.Deng, J., Xiong, T., Xu, F., Li, M., Han, C., Gong, Y., Wang, H., and Wang, Y.: Inspired by bread leavening: One-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 17, 4053 (2015).
76.Zhou, L., Cao, H., Zhu, S., Hou, L., and Yuan, C.: Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: A competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 17, 2373 (2015).

Keywords

Type Description Title
WORD
Supplementary materials

Du et al. supplementary material
Du et al. supplementary material 1

 Word (2.1 MB)
2.1 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed