Skip to main content Accessibility help
×
Home

N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response

  • Xiaotian Wang (a1), Dandan Ling (a1), Yueming Wang (a1), Huan Long (a1), Yibai Sun (a1), Yanqiong Shi (a1), Yuchao Chen (a1), Yao Jing (a1), Yueming Sun (a1) and Yunqian Dai (a1)...

Abstract

Titanium dioxide (TiO2), a widely used inorganic semiconductor owing to its superb photoelectric properties, has frequently been fabricated into composites to reduce its relatively large band gap and overcome its limited visible light absorption. In this article, a “layer-by-layer” method has been developed to prepare the composite structure of nitrogen (N)-doped graphene quantum dots (GQDs)-sensitized TiO2 nanofibers. The as-prepared structure shows considerable luminescence and exhibits excellent photoelectric properties. Various factors including the crystalline phase of TiO2, amount of N in GQDs, and irradiation wavelength were investigated to find the optimal conditions for enhanced photoelectric activity. It is demonstrated that the combination of highest N amount GQDs with TiO2 nanofibers of mixed phases (750 °C-sintered TiO2 nanofibers) possess the best photoelectric properties. The enhancement of properties using TiO2 nanofibers with mixed phases mainly contributes to the transfer of electrons between conduction bands of different phases in TiO2 and the distinctive photoluminescence (PL) property of N-GQDs. Furthermore, this enhancement can be achieved in most areas of the visible light range. The general mechanism of the electron generation and transfer of the structure is based on the normal PL and upconversion PL property of N-GQDs which serve as the sensitizer. We consider it a feasible method to improve the photoelectric conversion efficiency in photovoltaic devices.

Copyright

Corresponding author

a) Address all correspondence to these authors. email: Sun@seu.edu.cn
b) email: Daiy@seu.edu.cn

References

Hide All
1. Girit, Ç.Ö., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C-H., Crommie, M., Cohen, M.L., and Louie, S.G.: Graphene at the edge: Stability and dynamics. Science 323, 17051708 (2009).
2. Yan, X., Cui, X., Li, B., and Li, L.S.: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 18691873 (2010).
3. Zhuo, S., Shao, M., and Lee, S-T.: Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 6, 10591064 (2012).
4. Shen, J., Zhu, Y., Yang, X., and Li, C.: Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 36863699 (2012).
5. Ponomarenko, L., Schedin, F., Katsnelson, M., Yang, R., Hill, E., Novoselov, K., and Geim, A.: Chaotic Dirac billiard in graphene quantum dots. Science 320, 356358 (2008).
6. Baker, S.N. and Baker, G.A.: Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 49, 67266744 (2010).
7. Yang, S-T., Cao, L., Luo, P.G., Lu, F., Wang, X., Wang, H., Meziani, M.J., Liu, Y., Qi, G., and Sun, Y-P.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 1130811309 (2009).
8. Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y., and Qu, L.: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776780 (2011).
9. Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., and Ajayan, P.M.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 63376342 (2010).
10. Jeong, H.M., Lee, J.W., Shin, W.H., Choi, Y.J., Shin, H.J., Kang, J.K., and Choi, J.W.: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 24722477 (2011).
11. Li, Y., Zhao, Y., Cheng, H., Hu, Y., Shi, G., Dai, L., and Qu, L.: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 1518 (2012).
12. Parambhath, V.B., Nagar, R., and Ramaprabhu, S.: Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28, 78267833 (2012).
13. Li, M., Wu, W., Ren, W., Cheng, H-M., Tang, N., Zhong, W., and Du, Y.: Synthesis and upconversion luminescence of N-doped graphene quantum dots. Appl. Phys. Lett. 101, 103107 (2012).
14. Liu, R., Wu, D., Feng, X., and Müllen, K.: Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133, 1522115223 (2011).
15. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353389 (2003).
16. Long, R., English, N.J., and Prezhdo, O.V.: Photoinduced charge separation across the graphene-TiO2 interface is faster than energy losses: A time-domain ab initio analysis. J. Am. Chem. Soc. 134, 1423814248 (2012).
17. Du, A., Ng, Y.H., Bell, N.J., Zhu, Z., Amal, R., and Smith, S.C.: Hybrid graphene/titania nanocomposite: Interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett. 2, 894899 (2011).
18. Chen, C., Cai, W., Long, M., Zhou, B., Wu, Y., Wu, D., and Feng, Y.: Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4, 64256432 (2010).
19. Dai, Y., Sun, Y., Yao, J., Ling, D., Wang, Y., Long, H., Wang, X., Lin, B., Zeng, T.H., and Sun, Y.: Graphene-wrapped TiO2 nanofibers with effective interfacial coupling as ultrafast electron transfer bridges in novel photoanodes. J. Mater. Chem. A 2, 10601067 (2014).
20. Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510519 (1961).
21. Williams, K.J., Nelson, C.A., Yan, X., Li, L-S., and Zhu, X.: Hot electron injection from graphene quantum dots to TiO2 . ACS Nano 7, 13881394 (2013).
22. Dai, Y., Jing, Y., Zeng, J., Qi, Q., Wang, C., Goldfeld, D., Xu, C., Zheng, Y., and Sun, Y.: Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes. J. Mater. Chem. 21, 1817418179 (2011).
23. Dai, Y., Long, H., Wang, X., Wang, Y., Gu, Q., Jiang, W., Wang, Y., Li, C., Zeng, T.H., and Sun, Y.: Versatile graphene quantum dots with tunable nitrogen doping. Part. Part. Syst. Charact. 31, 597604 (2013).
24. Hummers, W.S. Jr. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).
25. Zhang, W., Zhang, M., Yin, Z., and Chen, Q.: Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B 70, 261265 (2000).
26. Lide, Z. and Mo, C-M.: Luminescence in nanostructured materials. Nanostruct. Mater. 6, 831834 (1995).
27. Shen, J., Yan, B., Shi, M., Ma, H., Li, N., and Ye, M.: One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21, 34153421 (2011).
28. Luo, D., Zhang, G., Liu, J., and Sun, X.: Evaluation criteria for reduced graphene oxide. J. Phys. Chem. C 115, 1132711335 (2011).
29. Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud'Homme, R.K., Aksay, I.A., and Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 3641 (2008).
30. Zhang, Y-H., Chan, C.K., Porter, J.F., and Guo, W.: Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis. J. Mater. Res. 13, 26022609 (1998).
31. Yang, Q., Xie, C., Xu, Z., Gao, Z., and Du, Y.: Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light. J. Phys. Chem. B 109, 55545560 (2005).
32. Jing, L., Li, S., Song, S., Xue, L., and Fu, H.: Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity. Sol. Energy Mater. Sol. Cells 92, 10301036 (2008).
33. Zhang, Y., Li, G., Jin, Y., Zhang, Y., Zhang, J., and Zhang, L.: Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365, 300304 (2002).
34. Francisco, M.S.P. and Mastelaro, V.R.: Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, x-ray diffraction, and textural studies. Chem. Mater. 14, 25142518 (2002).
35. Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., and Parkin, I.P.: Band alignment of rutile and anatase TiO2 . Nat. Mater. 12, 798801 (2013).
36. Morales-Torres, S., Pastrana-Martinez, L.M., Figueiredo, J.L., Faria, J.L., and Silva, A.M.: Design of graphene-based TiO2 photocatalysts – A review. Environ. Sci. Pollut. Res. Int. 19, 36763687 (2012).
37. Zhang, Q., He, Y., Chen, X., Hu, D., Li, L., Yin, T., and Ji, L.: Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite. Chin. Sci. Bull. 56, 331339 (2011).
38. Li, Q., Zhang, S., Dai, L., and Li, L.S.: Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 1893218935 (2012).
39. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., and Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 17521758 (2009).
40. Li, Y., Zhou, Z., Shen, P., and Chen, Z.: Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 3, 19521958 (2009).
41. Shen, J., Zhu, Y., Chen, C., Yang, X., and Li, C.: Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. 47, 25802582 (2011).
42. Pan, D., Zhang, J., Li, Z., Wu, C., Yan, X., and Wu, M.: Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 46, 36813683 (2010).
43. Hoffmann, R.: Trimethylene and the addition of methylene to ethylene. J. Am. Chem. Soc. 90, 14751485 (1968).
44. Wang, X., Yu, W.W., Zhang, J., Aldana, J., Peng, X., and Xiao, M.: Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B 68, 125318 (2003).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed