Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T22:34:20.666Z Has data issue: false hasContentIssue false

Nanowires assembled from iron manganite nanoparticles: Synthesis, characterization, and investigation of electrocatalytic properties for water oxidation reaction

Published online by Cambridge University Press:  15 July 2019

Asude Cetin
Affiliation:
Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
Ahmet M. Önal
Affiliation:
Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
Emren Nalbant Esenturk*
Affiliation:
Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
*
a)Address all correspondence to this author. e-mail: emren@metu.edu.tr
Get access

Abstract

The development of stable and effective earth-abundant metal oxide electrocatalysts is very crucial to improve competence of water electrolysis. In this study, iron manganite (FeMnO3) nanomaterials were synthesized as an affordable electrocatalyst for water oxidation reactions. The structural and chemical properties of FeMnO3 nanomaterials were studied by transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray, X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, and Brunauer–Emmett–Teller analyses. The microscopy analyses show that the synthesized material has wire morphology, and assembly of approximately 70 nm nanocrystallites forms the wires. XRD patterns confirmed the bixbyite structure of FeMnO3. The potential utility of the synthesized FeMnO3 nanowires (NWs) as an electrocatalyst for oxygen evolution reaction (OER) was investigated in alkaline medium. The FeMnO3 NW modified fluorinated tin oxide (FTO) electrodes demonstrated promising OER activity with onset potential of 1.60 V versus reversible hydrogen electrode and overpotential of 600 mV at 10 mA/cm2 catalytic current density. FeMnO3 NW modified FTO electrode was also observed to be stable during long-term constant potential electrolysis. Therefore, this new material can be considered as a cost-effective alternative to noble metal electrocatalysts for water oxidation and other possible catalytic reactions.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharyya, S.S., Ghosh, S., Tiwari, R., Sarkar, B., Singha, R.K., Pendem, C., Sasaki, T., and Bal, R.: Preparation of the CuCr2O4 spinel nanoparticles catalyst for selective oxidation of toluene to benzaldehyde. Green Chem. 16, 2500 (2014).CrossRefGoogle Scholar
Zhang, Y., Ding, F., Deng, C., Zhen, S., Li, X., Xue, Y., Yan, Y-M., and Sun, K.: Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction. Catal. Commun. 67, 78 (2015).CrossRefGoogle Scholar
Kim, Y-H., Heo, J-S., Kim, T-H., Park, S., Yoon, M-H., Kim, J., Oh, M.S., Yi, G-R., Noh, Y-Y., and Park, S.K.: Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature 489, 128 (2012).CrossRefGoogle ScholarPubMed
Teng, Y., Wang, X-D., Liao, J-F., Li, W-G., Chen, H-Y., Dong, Y-J., and Kuang, D-B.: Atomically thin defect-rich Fe–Mn–O hybrid nanosheets as high efficient electrocatalyst for water oxidation. Adv. Funct. Mater. 28, 1802463 (2018).CrossRefGoogle Scholar
Liu, Y., Zhang, N., Yu, C., Jiao, L., and Chen, J.: MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 16, 3321 (2016).CrossRefGoogle ScholarPubMed
Wu, X., Niu, Y., Feng, B., Yu, Y., Huang, X., Zhong, C., Hu, W., and Li, C.M.: Mesoporous hollow nitrogen-doped carbon nanospheres with embedded MnFe2O4/Fe hybrid nanoparticles as efficient bifunctional oxygen electrocatalysts in alkaline media. ACS Appl. Mater. Interfaces 10, 20440 (2018).CrossRefGoogle ScholarPubMed
Etzi Coller Pascuzzi, M., Selinger, E., Sacco, A., Castellino, M., Rivolo, P., Hernández, S., Lopinski, G., Tamblyn, I., Nasi, R., Esposito, S., Manzoli, M., Bonelli, B., and Armandi, M.: Beneficial effect of Fe addition on the catalytic activity of electrodeposited MnOx films in the water oxidation reaction. Electrochim. Acta 284, 294 (2018).CrossRefGoogle Scholar
Li, M., Xiong, Y., Liu, X., Bo, X., Zhang, Y., Han, C., and Guo, L.: Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7, 8920 (2015).CrossRefGoogle ScholarPubMed
Nagamuthu, S., Vijayakumar, S., Lee, S-H., and Ryu, K-S.: Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode. Appl. Surf. Sci. 390, 202 (2016).CrossRefGoogle Scholar
Li, J-Q., Zhou, F-C., Sun, Y-H., and Nan, J-M.: FeMnO3 porous nanocubes/Mn2O3 nanotubes hybrids derived from Mn3[Fe(CN)6]2·nH2O Prussian Blue Analogues as an anode material for lithium-ion batteries. J. Alloys Compd. 740, 346 (2018).CrossRefGoogle Scholar
Pilania, G. and Mannodi-Kanakkithodi, A.: First-principles identification of novel double perovskites for water-splitting applications. J. Mater. Sci. 52, 8518 (2017).CrossRefGoogle Scholar
Ekebas, E., Cetin, A., Önal, A.M., and Nalbant Esenturk, E.: Magnesium substituted cobalt spinel nanostructures for electrocatalytic water oxidation. J. Appl. Electrochem. 49, 315 (2019).CrossRefGoogle Scholar
Gaidan, I.: The development of FeMn2O4 gas sensors at room temperature. Key Eng. Mater. 605, 211 (2014).CrossRefGoogle Scholar
Habibi, M.H. and Mosavi, V.: Synthesis and characterization of Fe2O3/Mn2O3/FeMn2O4 nano composite alloy coated glass for photo-catalytic degradation of Reactive Blue 222. J. Mater. Sci.: Mater. Electron. 28, 11078 (2017).Google Scholar
Nepal, R., Zhang, Q., Dai, S., Tian, W., Nagler, S.E., and Jin, R.: Structural and magnetic transitions in spinel FeMn2O4 single crystals. Phys. Rev. B 97, 024410 (2018).CrossRefGoogle Scholar
Lin, J., Xie, S., Liu, P., Zhang, M., Wang, S., Zhang, P., and Cheng, F.: Three-dimensional structures of Mn doped CoP on flexible carbon cloth for effective oxygen evolution reaction. J. Mater. Res. 33, 1258 (2018).CrossRefGoogle Scholar
Pyeon, M., Ruoko, T-P., Leduc, J., Gönüllü, Y., Deo, M., Tkachenko, N.V., and Mathur, S.: Critical role and modification of surface states in hematite films for enhancing oxygen evolution activity. J. Mater. Res. 33, 455 (2018).CrossRefGoogle Scholar
Zhang, Y., Chang, C., Gao, H., Wang, S., Yan, J., Gao, K., Jia, X., Luo, H., Fang, H., Zhang, A., and Wang, L.: High-performance supercapacitor electrodes based on NiMoO4 nanorods. J. Mater. Res. (2019). doi: 10.1557/jmr.2019.165.CrossRefGoogle Scholar
Ling, W., Wang, M., Xiong, C., Xie, D., Chen, Q., Chu, X., Qiu, X., Li, Y., and Xiao, X.: Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res., 34, 1828 (2019).CrossRefGoogle Scholar
Zheng, Y., Jiao, Y., Zhu, Y., Li, L.H., Han, Y., Chen, Y., Du, A., Jaroniec, M., and Qiao, S.Z.: Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014).CrossRefGoogle ScholarPubMed
Zhao, Y., Zhang, X., Jia, X., Waterhouse, G.I.N., Shi, R., Zhang, X., Zhan, F., Tao, Y., Wu, L-Z., Tung, C-H., O’Hare, D., and Zhang, T.: Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 8, 1703585 (2018).CrossRefGoogle Scholar
Han, L., Dong, S., and Wang, E.: Transition-metal (Co, Ni, and Fe)-Based electrocatalysts for the water oxidation reaction. Adv. Mater. 28, 9266 (2016).CrossRefGoogle ScholarPubMed
Yu, X-Y., Feng, Y., Guan, B., (David) Lou, X.W., and Paik, U.: Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ. Sci. 9, 1246 (2016).CrossRefGoogle Scholar
Dou, S., Dong, C-L., Hu, Z., Huang, Y-C., Chen, J., Tao, L., Yan, D., Chen, D., Shen, S., Chou, S., and Wang, S.: Atomic-scale CoOx species in metal–organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 27, 1702546 (2017).CrossRefGoogle Scholar
Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B., and Shao-Horn, Y.: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383 (2011).CrossRefGoogle ScholarPubMed
Chi, M., Chen, S., Zhong, M., Wang, C., and Lu, X.: Self-templated fabrication of FeMnO3 nanoparticle-filled polypyrrole nanotubes for peroxidase mimicking with a synergistic effect and their sensitive colorimetric detection of glutathione. Chem. Commun. 54, 5827 (2018).CrossRefGoogle ScholarPubMed
Saravanakumar, B., Muthu Lakshmi, S., Ravi, G., Ganesh, V., Sakunthala, A., and Yuvakkumar, R.: Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications. J. Alloys Compd. 723, 115 (2017).CrossRefGoogle Scholar
Ghosh, D., Dutta, U., Haque, A., Mordvinova, N.E., Lebedev, O.I., Pal, K., Gayen, A., Mahata, P., Kundu, A.K., and Motin Seikh, M.: Evidence of low temperature spin glass transition in bixbyite type FeMnO3. Mater. Sci. Eng., B 226, 206 (2017).CrossRefGoogle Scholar
Gowreesan, S. and Ruban Kumar, A.: Structural, magnetic, and electrical property of nanocrystalline perovskite structure of iron manganite (FeMnO3). Appl. Phys. A 123, 689 (2017).CrossRefGoogle Scholar
Habibi, M.H. and Mosavi, V.: Urea combustion synthesis of nano-structure bimetallic perovskite FeMnO3 and mixed monometallic iron manganese oxides: Effects of preparation parameters on structural, opto-electronic and photocatalytic activity for photo-degradation of basic blue 12. J. Mater. Sci.: Mater. Electron. 28, 8473 (2017).Google Scholar
Rayaprol, S. and Kaushik, S.D.: Magnetic and magnetocaloric properties of FeMnO3. Ceram. Int. 41, 9567 (2015).CrossRefGoogle Scholar
Li, M., Xu, W., Wang, W., Liu, Y., Cui, B., and Guo, X.: Facile synthesis of specific FeMnO3 hollow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor. J. Power Sources 248, 465 (2014).CrossRefGoogle Scholar
Cao, K., Liu, H., Xu, X., Wang, Y., and Jiao, L.: FeMnO3: A high-performance Li-ion battery anode material. Chem. Commun. 52, 11414 (2016).CrossRefGoogle ScholarPubMed
Lobo, L.S. and Rubankumar, A.: Investigation on structural and electrical properties of FeMnO3 synthesized by sol-gel method. Ionics 25, 1341 (2019).CrossRefGoogle Scholar
Saravanakumar, B., Ramachandran, S.P., Ravi, G., Ganesh, V., Guduru, R.K., and Yuvakkumar, R.: Electrochemical characterization of FeMnO3 microspheres as potential material for energy storage applications. Mater. Res. Express 5, 015504 (2018).CrossRefGoogle Scholar
Nikam, R., Rayaprol, S., Goyal, P.S., Babu, P.D., Radha, S., and Siruguri, V.: Structural and magnetic properties of Fe-doped Mn2O3 orthorhombic bixbyite. J. Supercond. Novel Magn. 31, 2179 (2018).CrossRefGoogle Scholar
Yang, Q., Yang, X., Yan, Y., Sun, C., Wu, H., He, J., and Wang, D.: Heterogeneous activation of peroxymonosulfate by different ferromanganese oxides for tetracycline degradation: Structure dependence and catalytic mechanism. Chem. Eng. J. 348, 263 (2018).CrossRefGoogle Scholar
Bhavsar, S., Tackett, B., and Veser, G.: Evaluation of iron- and manganese-based mono- and mixed-metallic oxygen carriers for chemical looping combustion. Fuel 136, 268 (2014).CrossRefGoogle Scholar
Leontie, L., Doroftei, C., and Carlescu, A.: Nanocrystalline iron manganite prepared by sol–gel self-combustion method for sensor applications. Appl. Phys. A 124, 750 (2018).CrossRefGoogle Scholar
Hou, X., Zhu, G., Niu, X., Dai, Z., Yin, Z., Dong, Q., Zhang, Y., and Dong, X.: Ternary transition metal oxide derived from Prussian blue analogue for high-performance lithium ion battery. J. Alloys Compd. 729, 518 (2017).CrossRefGoogle Scholar
Kim, D-W., Rhee, K-Y., and Park, S-J.: Synthesis of activated carbon nanotube/copper oxide composites and their electrochemical performance. J. Alloys Compd. 530, 6 (2012).CrossRefGoogle Scholar
Xu, S., Dong, D., Wang, Y., Doherty, W., Xie, K., and Wu, Y.: Perovskite chromates cathode with resolved and anchored nickel nano-particles for direct high-temperature steam electrolysis. J. Power Sources 246, 346 (2014).CrossRefGoogle Scholar
Ding, J., Zhong, Q., and Zhang, S.: Simultaneous removal of NOX and SO2 with H2O2 over Fe based catalysts at low temperature. RSC Adv. 4, 5394 (2014).CrossRefGoogle Scholar
Pham, M-H., Dinh, C-T., Vuong, G-T., Ta, N-D., and Do, T-O.: Visible light induced hydrogen generation using a hollow photocatalyst with two cocatalysts separated on two surface sides. Phys. Chem. Chem. Phys. 16, 5937 (2014).CrossRefGoogle ScholarPubMed
Tang, Q., Jiang, L., Liu, J., Wang, S., and Sun, G.: Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal. 4, 457 (2014).CrossRefGoogle Scholar
Kim, J., Yin, X., Tsao, K-C., Fang, S., and Yang, H.: Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 136, 14646 (2014).CrossRefGoogle ScholarPubMed
Li, Z., Lv, L., Wang, J., Ao, X., Ruan, Y., Zha, D., Hong, G., Wu, Q., Lan, Y., Wang, C., Jiang, J., and Liu, M.: Engineering phosphorus-doped LaFeO3−δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 47, 199 (2018).CrossRefGoogle Scholar
Jin, C., Cao, X., Zhang, L., Zhang, C., and Yang, R.: Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction. J. Power Sources 241, 225 (2013).CrossRefGoogle Scholar
Peng, S., Han, X., Li, L., Chou, S., Ji, D., Huang, H., Du, Y., Liu, J., and Ramakrishna, S.: Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc–air batteries. Adv. Energy Mater. 8, 1800612 (2018).CrossRefGoogle Scholar
Hua, B., Li, M., and Luo, J-L.: A facile surface chemistry approach to bifunctional excellence for perovskite electrocatalysis. Nano Energy 49, 117 (2018).CrossRefGoogle Scholar
Xu, Y., Tsou, A., Fu, Y., Wang, J., Tian, J-H., and Yang, R.: Carbon-coated perovskite BaMnO3 porous nanorods with enhanced electrocatalytic perporites for oxygen reduction and oxygen evolution. Electrochim. Acta 174, 551 (2015).CrossRefGoogle Scholar
Du, J., Zhang, T., Cheng, F., Chu, W., Wu, Z., and Chen, J.: Nonstoichiometric perovskite CaMnO3−δ for oxygen electrocatalysis with high activity. Inorg. Chem. 53, 9106 (2014).CrossRefGoogle Scholar
Zhao, Q., Yan, Z., Chen, C., and Chen, J.: Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117, 10121 (2017).CrossRefGoogle ScholarPubMed
Sun, C., Yang, J., Dai, Z., Wang, X., Zhang, Y., Li, L., Chen, P., Huang, W., and Dong, X.: Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Res. 9, 1300 (2016).CrossRefGoogle Scholar
Liu, J., Nan, Y., Chang, X., Li, X., Fang, Y., Liu, Y., Tang, Y., Wang, X., Li, R., and Ma, J.: Hierarchical nitrogen-enriched porous carbon materials derived from Schiff-base networks supported FeCo2O4 nanoparticles for efficient water oxidation. Int. J. Hydrogen Energy 42, 10802 (2017).CrossRefGoogle Scholar
Gao, M., Sheng, W., Zhuang, Z., Fang, Q., Gu, S., Jiang, J., and Yan, Y.: Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 136, 7077 (2014).CrossRefGoogle ScholarPubMed
Bao, J., Zhang, X., Fan, B., Zhang, J., Zhou, M., Yang, W., Hu, X., Wang, H., Pan, B., and Xie, Y.: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 54, 7399 (2015).CrossRefGoogle Scholar
Cheng, F., Zhang, T., Zhang, Y., Du, J., Han, X., and Chen, J.: Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 52, 2474 (2013).CrossRefGoogle Scholar
Suen, N-T., Hung, S-F., Quan, Q., Zhang, N., Xu, Y-J., and Chen, H.M.: Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 46, 337 (2017).CrossRefGoogle ScholarPubMed
Zhang, B., Zheng, X., Voznyy, O., Comin, R., Bajdich, M., Garcia-Melchor, M., Han, L., Xu, J., Liu, M., Zheng, L., Garcia de Arquer, F.P., Dinh, C.T., Fan, F., Yuan, M., Yassitepe, E., Chen, N., Regier, T., Liu, P., Li, Y., De Luna, P., Janmohamed, A., Xin, H.L., Yang, H., Vojvodic, A., and Sargent, E.H.: Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333 (2016).CrossRefGoogle ScholarPubMed
Lee, S.Y., González-Flores, D., Ohms, J., Trost, T., Dau, H., Zaharieva, I., and Kurz, P.: Screen-printed calcium-birnessite electrodes for water oxidation at neutral pH and an “electrochemical harriman series”. ChemSusChem 7, 3442 (2014).CrossRefGoogle Scholar
Zhao, J., Li, X., Cui, G., and Sun, X.: Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr2O4 nanoparticle film. Chem. Commun. 54, 5462 (2018).CrossRefGoogle ScholarPubMed
Supplementary material: File

Cetin et al. supplementary material

Figures S1 and S2

Download Cetin et al. supplementary material(File)
File 556.7 KB