Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T16:09:39.733Z Has data issue: false hasContentIssue false

Nanoscale planar faulting in nanocrystalline Ni–W thin films: Grain growth, segregation, and residual stress

Published online by Cambridge University Press:  26 September 2011

Udo Welzel*
Affiliation:
Max Planck Institute for Intelligent Systems (formerly: Max Planck Institute for Metals Research), D-70569 Stuttgart, Germany
Johannes Kümmel
Affiliation:
Institute for Materials Science, University of Stuttgart, D-70569 Stuttgart, Germany
Ewald Bischoff
Affiliation:
Max Planck Institute for Intelligent Systems (formerly: Max Planck Institute for Metals Research), D-70569 Stuttgart, Germany
Silke Kurz
Affiliation:
Max Planck Institute for Intelligent Systems (formerly: Max Planck Institute for Metals Research), D-70569 Stuttgart, Germany
Eric Jan Mittemeijer
Affiliation:
Max Planck Institute for Intelligent Systems (formerly: Max Planck Institute for Metals Research), D-70569 Stuttgart, Germany; and Institute for Materials Science, University of Stuttgart, D-70569 Stuttgart, Germany
*
a)Address all correspondence to this author. e-mail: u.welzel@is.mpg.de
Get access

Abstract

Pure Ni and Ni–W thin films with different W contents (<22 at.%) and a thickness of 500 nm have been produced by (co)sputtering. The phase composition, changes in residual stress, crystallite size, microstrain, and texture have been investigated employing in-situ x-ray diffraction measurements (25–550 °C) and ex-situ transmission electron microscopy analyses. For all compositions investigated, W dissolves substitutionally in Ni. The dissolution of W results in a highly columnar nanocrystalline microstructure with grain aspect ratios (height to width) exceeding 10. The Ni(W) solid solution exhibits a very high density of planar (twin and intrinsic stacking) faults oriented perpendicular to the growth direction. Whereas grain coarsening occurs for the nanocrystalline pure Ni thin films already upon heating to temperatures as low as about 125 °C, the microstructure of the nanocrystalline Ni–W thin films remains stable up to much higher temperatures, that is, even exceeding 350 °C. Above 350 °C, a W depletion of the Ni–W layer as a result of W segregation at planar faults occurs, which is accompanied by a change in lattice constant and in-plane stress.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Siegel, R.W.: Nanostructured materials -mind over matter. Nanostruct. Mater. 3, 1 (1993).CrossRefGoogle Scholar
2.Gusev, A.I.: The effects of the nanocrystalline state in solids. Usp. Fiziol. Nauk 168, 55 (1998).CrossRefGoogle Scholar
3.Koch, C.C., Ovid’ko, I.A., Seal, S., and Veprek, S.: Structural Nanocrystalline Materials (Cambridge University Press, Cambridge, 2007).CrossRefGoogle Scholar
4.Meyers, M.A., Mishra, A., and Benson, D.J.: The deformation physics of nanocrystalline metals: Experiments, analysis, and computations. JOM 58, 41 (2006).CrossRefGoogle Scholar
5.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
6.Lu, L., Sui, M.L., and Lu, K.: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463 (2000).CrossRefGoogle ScholarPubMed
7.Croat, J.J., Herbst, J.F., Lee, R.W., and Pinkerton, F.E.: Pr-Fe and Nd-Fe-based materials—A new class of high-performance permanent-magnets. J. Appl. Phys. 55, 2078 (1984).CrossRefGoogle Scholar
8.Ekinci, K.L. and Roukes, M.L.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).CrossRefGoogle Scholar
9.Birringer, R.: Nanocrystalline materials. Mater. Sci. Eng., A 117, 33 (1989).CrossRefGoogle Scholar
10.Hansen, K. and Pantleon, K.: Microstructure stability of silver electrodeposits at room temperature. Scr. Mater. 58, 96 (2008).CrossRefGoogle Scholar
11.Günther, B., Kumpmann, A., and Kunze, H.D.: Secondary recrystallization effects in nanostructured elemental metals. Scr. Metall. Mater. 27, 833 (1992).CrossRefGoogle Scholar
12.Pantleon, K. and Somers, M.A.J.: In situ investigation of the microstructure evolution in nanocrystalline copper electrodeposits at room temperature. J. Appl. Phys. 100, 114319 (2006).CrossRefGoogle Scholar
13.Mittemeijer, E.J.: Fundamentals of Materials Science (Springer Verlag, Heidelberg, 2010).Google Scholar
14.Weissmuller, J.: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 (1993).CrossRefGoogle Scholar
15.Kirchheim, R.: Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 (2002).CrossRefGoogle Scholar
16.Koch, C.C., Scattergood, R.O., Darling, K.A., and Semones, J.E.: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43, 7264 (2008).CrossRefGoogle Scholar
17.Michels, A., Krill, C.E., Ehrhardt, H., Birringer, R., and Wu, D.T.: Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47, 2143 (1999).CrossRefGoogle Scholar
18.Shvindlerman, L.S. and Gottstein, G.: Efficiency of drag mechanisms for inhibition of grain growth in nanocrystalline materials. Z. Metallk. 95, 239 (2004).CrossRefGoogle Scholar
19.Liu, F. and Kirchheim, R.: Comparison between kinetic and thermodynamic effects on grain growth. Thin Solid Films 466, 108 (2004).CrossRefGoogle Scholar
20.Bos, C., Sommer, F., and Mittemeijer, E.J.: Atomistic study on the activation enthalpies for interface mobility and boundary diffusion in an interface-controlled phase transformation. Philos. Mag. 87, 2245 (2007).CrossRefGoogle Scholar
21.Detor, A.J. and Schuh, C.A.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007).CrossRefGoogle Scholar
22.Detor, A.J. and Schuh, C.A.: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007).CrossRefGoogle Scholar
23.Choi, P., Al-Kassab, T., Gartner, F., Kreye, H., and Kirchheim, R.: Thermal stability of nanocrystalline nickel-18 at.% tungsten alloy investigated with the tomographic atom probe. Mater. Sci. Eng., A 353, 74 (2003).CrossRefGoogle Scholar
24.Detor, A.J., Miller, M.K., and Schuh, C.A.: Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 (2006).CrossRefGoogle Scholar
25.Ruan, S. and Schuh, C.A.: Mesoscale structure and segregation in electrodeposited nanocrystalline alloys. Scr. Mater. 59, 1218 (2008).CrossRefGoogle Scholar
26.Rupert, T.J., Trenkle, J.C., and Schuh, C.A.: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).CrossRefGoogle Scholar
27.Schuh, C.A., Nieh, T.G., and Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 (2003).CrossRefGoogle Scholar
28.Borgia, C., Scharowsky, T., Furrer, A., Solenthaler, C., and Spolenak, R.: A combinatorial study on the influence of elemental composition and heat treatment on the phase composition, microstructure and mechanical properties of Ni-W alloy thin films. Acta Mater. 59, 386 (2011).CrossRefGoogle Scholar
29.Wohlschlogel, M., Schulli, T.U., Lantz, B., and Welzel, U.: Application of a single-reflection collimating multilayer optic for X-ray diffraction experiments employing parallel-beam geometry. J. Appl. Cryst. 41, 124 (2008).CrossRefGoogle Scholar
30.Wohlschlögel, M., Welzel, U., Maier, G., and Mittemeijer, E.J.: Calibration of a heating/cooling chamber for X-ray diffraction measurements of mechanical stress and crystallographic texture. J. Appl. Cryst. 39, 194 (2006).CrossRefGoogle Scholar
31.Welzel, U., Ligot, J., Lamparter, P., Vermeulen, A.C., and Mittemeijer, E.J.: Stress analysis of polycrystalline thin films and surface regions by x-ray diffraction. J. Appl. Cryst. 38, 1 (2005).CrossRefGoogle Scholar
32.Gale, W.F. and Totemeier, T.C.: Smithells Metals Reference Book (Elsevier, Amsterdam, 2004).Google Scholar
33.Bollenrath, F., Hauk, V., and Müller, E.H.: On calculation of polycrystalline elasticity constants from single crystal data. Z. Metallkd. 58, 76 (1967).Google Scholar
34.de Keijser, T.H., Langford, J.I., Mittemeijer, E.J., and Vogels, A.B.P.: Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Cryst. 15, 308 (1982).CrossRefGoogle Scholar
35.Mittemeijer, E.J. and Welzel, U.: The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z. Kristallogr. 223, 552 (2008).CrossRefGoogle Scholar
36.Strecker, A., Bäder, U., Kelsch, M., Salzberger, U., Sycha, M., Gao, M., Richter, G., and van Bentem, K.: Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning. Z. Metallkd. 94, 290 (2003).CrossRefGoogle Scholar
37.Nagender Naidu, S.V., Sriramamurthy, A.M., and Rama Rao, P.: Nb-W. Binary alloy phase diagrams. 2782–2783, 1988.Google Scholar
38.Okolo, B., Lamparter, P., Welzel, U., Wagner, T., and Mittemeijer, E.J.: The effect of deposition parameters and substrate surface condition on texture, morphology and stress in magnetron-sputter-deposited Cu thin films. Thin Solid Films. 474, 50 (2005).CrossRefGoogle Scholar
39.Kong, L.T., Liu, J.B., Lal, W.S., and Liu, B.X.: Correlation of lattice constant versus tungsten concentration of the Ni-based solid solution examined by molecular dynamics simulation. J. Alloy. Comp. 337, 143 (2002).CrossRefGoogle Scholar
40.Velterop, L., Delhez, R., de Keijser, T.H., Mittemeijer, E.J., and Reefman, D.: X-ray diffraction analysis of stacking and twin faults in F.C.C. metals: A revision and allowance for texture and non-uniform fault probabilities. J. Appl. Cryst. 33, 296 (2000).CrossRefGoogle Scholar
41.Whelan, M.J. and Hirsch, P.B.: Electron diffraction from crystals containing stacking faults: II. Phil. Mag. 2, 1303 1957.CrossRefGoogle Scholar
42.Treacy, M.M.J., Newsam, J.M., and Deem, M.W.: A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. London, Ser. A 433, 499 (1991).Google Scholar
43.Rhodes, C. and Thompson, A.: The composition dependence of stacking fault energy in austenitic stainless steels. Metall. Mater. Trans. A 8, 1901 (1977).CrossRefGoogle Scholar
44.Zhang, X., Misra, A., Wang, H., Nastasi, M., Embury, J.D., Mitchell, T.E., Hoagland, R.G., and Hirth, J.P.: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84, 1096 (2004).CrossRefGoogle Scholar
45.Zhang, X., Wang, H., Chen, X.H., Lu, L., Lu, K., Hoagland, R.G., and Misra, A.: High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett. 88, 173116 (2006).CrossRefGoogle Scholar
46.Anderoglu, O., Misra, A., Wang, H., Ronning, F., Hundley, M.F., and Zhang, X.: Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93, 083108 (2008).CrossRefGoogle Scholar
47.Zhang, X., Anderoglu, O., Hoagland, R.G., and Misra, A.: Nanoscale growth twins in sputtered metal films. JOM. 60, 75 (2008).CrossRefGoogle Scholar
48.Siegel, D.J.: Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys. Appl. Phys. Lett. 87, 121901 (2005).CrossRefGoogle Scholar
49.Dahlgren, S.D., Nicholson, W.L., Merz, M.D., Bollmann, W., Devlin, J.F., and Wang, D.R.: Microstructural analysis and tensile properties of thick copper and nickel sputter deposits. Thin Solid Films 40, 345 (1977).CrossRefGoogle Scholar
50.Kurz, S., Welzel, U., and Mittemeijer, E.J.. in preparation, 2011.Google Scholar
51.Nix, W.D.: Mechanical properties of thin films. Metall. Trans. A: Phys. Metall. Mater. Sci. 20A, 2217 (1989).CrossRefGoogle Scholar
52.Chakraborty, J., Welzel, U., and Mittemeijer, E.J.: Interdiffusion, phase formation and stress development in Cu-Pd thin-film diffusion couples: Interface thermodynamics and mechanisms. J. Appl. Phys. 103, 113512 (2008).CrossRefGoogle Scholar
53.Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D.: Thermal Expansion, Metallic Elements and Alloys, Vol. 12 (IFI/Plenum, New York, 1975).Google Scholar
54.Ohring, M.: The Materials Science of Thin Films (Academic Press, San Diego, 2002).Google Scholar
55.Kuru, Y., Wohlschlogel, M., Welzel, U., and Mittemeijer, E.J.: Large excess volume in grain boundaries of stressed, nanocrystalline metallic thin films: Its effect on grain-growth kinetics. Appl. Phys. Lett. 95, 163112 (2009).CrossRefGoogle Scholar
56.Thompson, C.V.: Grain-growth in thin-films. Annu. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
57.Guiraldenq, P.: Mateaux. Corros. Inds. 39, 347 (1964).Google Scholar
58.Chakraborty, J., Welzel, U., and Mittemeijer, E.J.: Mechanisms of interdiffusion in Pd-Cu thin film diffusion couples. Thin Solid Films 518, 2010 (2010).CrossRefGoogle Scholar
59.Suzuki, H.: Segregation of solute atoms to stacking faults. J. Phys. Soc. Jpn. 17, 322 1962.CrossRefGoogle Scholar
60.Herschitz, R. and Seidman, D.N.: Atomic resolution observations of solute atom segregation to stacking faults in a Co-0.96 at-percent Nb alloy. Scr. Metall. 16, 849 (1982).CrossRefGoogle Scholar
61.Mendis, B.G., Jones, I.P., and Smallman, R.E.: Suzuki segregation in a binary Cu-Si alloy. J. Electron Microsc. 53, 311 (2004).CrossRefGoogle Scholar