Skip to main content Accessibility help

Nanoindentation to quantify the effect of insect dimorphism on the mechanical properties of insect rubberlike cuticle

  • Céline M. Hayot (a1), Susan Enders (a2), Anthony Zera (a3) and Joseph A. Turner (a4)


Rubberlike insect cuticle is a light fibrous composite, which exhibits great deformability and long-range elasticity due to the presence of a large amount of the elastomeric protein resilin. The presence of resilin in specific locations in the insect body leads to the assumption that its main function is loss-free storage of energy. Rubberlike cuticle was identified, for the first time, in the femur base of the sand field cricket, Gryllus firmus, using fluorescence microscopy and various staining methods. Dynamic nanoindentation testing was then used to investigate the differences in the mechanical properties of rubberlike cuticle between males and females and wing morphs of this species. Significant changes in storage, loss moduli, and resilience were captured between female wing morphs. The results provide insight into the structure–function relations associated with the properties of insect joints from different morphs and genders.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Vincent, J.F.V. and Wegst, U.G.K.: Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33, 187 (2004).
2.Weis-Fogh, T.: A rubber-like protein in insect cuticle. J. Exp. Biol. 37, 889 (1960).
3.Vincent, J.F.V.: Arthropod cuticle: A natural composite shell system. Composites Part A 33, 1311 (2002).
4.Vincent, J.F.V.: Structural Biomaterials (Princeton University Press, Princeton, New Jersey, 1990).
5.Shewry, P.R., Tatham, A.S., and Bailey, A.: Elastomeric Proteins: Structures, Biomechanical Properties, and Biological Roles (Cambridge University Press, Cambridge, England, 2003).
6.Miller, P.L.: Respiration in the desert locust. II. The control of the spiracles. J. Exp. Biol. 37, 237 (1960).
7.Burrows, M.: Morphology and action of the hind leg joints controlling jumping in froghopper insects. J. Exp. Biol. 209, 4622 (2006).
8.Neff, D., Frazier, S.F., Quimby, L., Wang, R-T., and Zill, S.: Identification of resilin in the leg of cockroach, Periplaneta americana: Confirmation by a simple method using pH dependence of UV fluorescence. Arthropod Struct. Dev. 29, 75 (2000).
9.Enders, S., Barbakadze, N., Gorb, S.N., and Arzt, E.: Exploring biological surfaces by nanoindentation. J. Mater. Res. 19, 880 (2003).
10.Barbakadze, N., Enders, S., Gorg, S., and Artz, E.: Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 209, 722 (2006).
11.Sun, J., Tong, J., and Ma, Y.: Nanomechanical behaviours of cuticle of three kinds of beetle. J. Bionic Eng. 5, 152 (2008).
12.Andersen, S.O. and Weis-Fogh, T.: Resilin, a rubber like protein in arthropod. Adv. Insect Physiol. 2, 1 (1964).
13.Odegard, G.M., Gates, T.S., and Herring, H.M.: Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exp. Mech. 45, 130 (2005).
14.Syed Asif, S.A., Wahl, K.J., and Colton, R.J.: Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev. Sci. Instrum. 70, 2408 (1999).
15.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
16.Kreuz, P., Kesel, A., Kempf, A., Göken, M., Vehoff, H., and Nachtigall, W.: Mechnische Eigenschaften biologischer Materialien am Beispiel Insektenflügel. BIONA Rep. 14, 201 (1999).
17.Weis-Fogh, T.: Thermodynamic properties of resilin, a rubber-like protein. J. Mol. Biol. 3, 658 (1961).
18.Jensen, M. and Weis-Fogh, T.: Biology and physics of locust flight V. Strength and elasticity of locust cuticle. Philos. Trans. R. Soc. London, Ser. B 245, 137 (1962).
19.King, R.J.: Dynamic mechanical properties of resilin. M.S. thesis (Virginia Polytechnic Institute and State University, 2010).
20.Socha, R. and Zemek, R.; Locomotor activity in adult Pyrrhocoris apterus (Heteroptera) in relation to sex, physiological status and wing dimorphism. Physiol. Entomol. 25, 383 (2000).
21.Socha, R. and Zemek, R.: Wing morph-related differences in the walking pattern and dispersal in a flightless bug, Pyrrhocoris apterus (Heteroptera). Oikos 100, 35 (2003).
22.Dudek, D.M. and Full, R.J.: Passive mechanical properties of legs from running insects. J. Exp. Biol. 209, 1502 (2006).
23.Watson, J.T., Ritzmann, R.E., Zill, S.N., and Pollack, A.J.: Control of obstacle climbing in the cockroach, Blaberus discoidalis I. Kinematics. J. Comp. Physiol. 188, 39 (2002).
24.Cruse, H. and Bartling, C.: Movement of joint angles in the legs of a walking insect, Carausius morosus. J. Insect Physiol. 41, 761 (1995).
25.Mitra, C.M.: Life history trade-offs and phenotypic plasticity: A tale of a flight polyphenic cricket. Ph.D. dissertation (University of Nebraska-Lincoln, 2011).
26.Raabe, D., Sachs, C., and Romano, P.: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53, 4281 (2005).
27.Meyers, M.A., Chen, P-Y., Lin, A.Y-M., and Seki, Y.: Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53, 1 (2008).
28.Seto, J., Gupta, H.S., Zaslansky, P., Wagner, H.D., and Fratzl, P.: Tough lessons from bone: Extreme mechanical anisotropy at the mesoscale. Adv. Funct. Mater. 18, 1905 (2008).
29.Lu, D. and Barber, A.H.: Optimized nanoscale composite behaviour in limpet teeth. J. R. Soc. Interface 9, 1318 (2012).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed