Skip to main content Accessibility help

Nanoindentation investigations to study solid solution hardening in Ni-based diffusion couples

  • Oliver Franke (a1), Karsten Durst (a1) and Mathias Göken (a1)


In this work the hardening effect of Ta and Mo in Ni-base alloys was investigated using a combinatorial approach with diffusion couples. Furthermore, the Ni-Fe system was used as a reference system taking advantage of the full miscibility at high temperatures. Ta was chosen, as aside from having a technical relevance in the Ni-base superalloys, it also has a high miscibility in Ni. The main focus of this paper will be solid solution hardening. It will be shown that even though the determination of hardness is subject to varying indentation size effects (ISE) [Durst et al., Acta Mater.55(20), 6825 (2007)], only a few modifications are necessary to describe solid solution strengthening measured by nanoindentations using the Labusch theory [Labusch, Acta Metall.20(7), 917 (1972)]. Moreover, after a careful evaluation of the results, the data can be used to investigate solid solution hardening effects quickly and efficiently with small amounts of material.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.O'Hara, K.S., Walston, W.S., Ross, E.W., and Darolia, R.: U.S. Patent No. 5,482,789 (General Electric Company, Cincinnati, OH, 1996).
2.Kodentsov, A.A., Bastin, G.F., and van Loo, F.J.J.: The diffusion couple technique in phase diagram determination. J. Alloys Compd. 320(2), 207 (2001).
3.Zhao, J., Jackson, M., Peluso, L., and Brewer, L.: A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. JOM 54(7), 42 (2002).
4.Zhao, J-C.: A combinatorial approach for efficient mapping of phase diagrams and properties. J. Mater. Res. 16(6), 1565 (2001).
5.Zhao, J-C.: Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships. Prog. Mater. Sci. 51(5), 557 (2006).
6.Zhao, J-C.: A combinatorial approach for structural materials. Adv. Eng. Mater. 3(3), 143 (2001).
7.Zhao, J-C.: Reliability of the diffusion-multiple approach for phase diagram mapping. J. Mater. Sci. 39(12), 3913 (2004).
8.Rar, A., Frafjord, J.J., Fowlkes, J.D., Specht, E.D., Rack, P.D., Santella, M.L., Bei, H., George, E.P., and Pharr, G.M.: PVD synthesis and high-throughput property characterization of Ni-Fe-Cr alloy libraries. Meas. Sci. Technol. 16(1), 46 (2005).
9.Franke, O., Durst, K., and Goken, M.: Microstructure and local mechanical properties of Pt-modified nickel aluminides on nickel-base superalloys after thermo-mechanical fatigue. Mater. Sci. Eng., A 467(1–2), 15 (2007).
10.Rosbaud, P. and Schmid, E.: Uber Verfestigung von Einkristallen durch Legierung und Kaltreckung. Z. Phys. 32, 197 (1925).
11.Sachs, G. and Weerts, J.: Zugversuche an Gold-Silberkristallen. Z. Phys. 62, 473 (1930).
12.Goeler, F. v. and Sachs, G., Zugversuche an Kristallen aus Kupfer und a-Messing. Z. Phys. 55, 581 (1929).
13.Osswald, E.: Zugversuche an Kupfer-Nickelkristallen. Z. Phys. 83, 55 (1933).
14.Nabarro, F.R.N.: The mechanical properties of metallic solid solutions. Proc. Phys. Sec. 58, (1946).
15.Mott, N.F. and Nabarro, F.R.N.: An attempt to estimate the degree of precipitation hardening, with a simple model. Proc. Phys. Soc. 52(8), 86 (1940).
16.Durst, K. and Göken, M.: Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys. Mater. Sci. Eng., A 387–389, 312 (2004).
17.Göken, M., Kempf, M., and Nix, W.D.: Hardness and modulus of the lamellar microstructure in PST-TiAl studied by nanoindenta-tions and AFM. Acta Mater. 49(5), 903 (2001).
18.Schöberl, T., Gupta, H.S., and Fratzl, P.: Measurements of mechanical properties in Ni-base superalloys using nanoindentation and atomic force microscopy. Mater. Sci. Eng., A 363(1–2), 211 (2003).
19.Durst, K., Franke, O., Bohner, A., and Goken, M.: Indentation size effect in Ni-Fe solid solutions. Acta Mater. 55(20), 6825 (2007).
20.Backes, B., Durst, K., and Göken, M.: Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag. 86, 5541 (2006).
21.Durst, K., Backes, B., and Goken, M.: Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52(11), 1093 (2005).
22.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1998).
23.Atkins, A.G. and Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13(3), 149 (1965).
24.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).
25.Flor, H., Gudladt, H.J., and Schwink, C.: Plastic deformation of Fe-Ni invar alloys. Acta Metall. 28, 1611 (1980).
26.Durst, K., Backes, B., Franke, O., and Goken, M.: Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54(9), 2547 (2006).
27.Bahr, D.F. and Vasquez, G.: Effect of solid solution impurities on dislocation nucleation during nanoindentation. J. Mater. Res. 20 (8), 1947 (2005).
28.Labusch, R.: Statistical theories of solid solution hardening. Acta Metall. 20(7), 917 (1972).
29.Davies, C.K.L., Sagar, V., and Stevens, R.N.: The effect of the stacking fault energy on the plastic deformation of polycristalline NiCo-alloys. Acta Metall. 21, 1343 (1973).
30.Akhtar, A. and Teghtsoonian, E.: Plastic deformation of Ni-Cr single crystals. Metall. Trans. 2(10), 2757 (1971).
31.Reid, C.N.: Deformation Geometry for Materials Scientists (Pergamon Press, Oxford, UK, 1973).
32.Schulze, G.E.R.: Metallphysik (Springer-Verlag, Vienna, 1974).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed