Skip to main content Accessibility help

Nanoindentation creep in polycarbonate and syndiotactic polystyrene

  • Chien-Chao Huang (a1), Mao-Kuo Wei (a2), Julie P. Harmon (a3) and Sanboh Lee (a4)


This study focuses on nanoindentation creep in polycarbonate (PC) and syndiotactic polystyrene (sPS) throughout the transient and steady-state regions. The viscoelastic Burgers model is used to explain transient creep data, while the power-law creep model is used to interpret steady-state creep data. The Newtonian shear viscosity of the Maxwell element and Young’s modulus of the Kelvin element are greater for the creep period than for the preload period, and an opposite trend is noted in the Newtonian shear viscosity of the Kelvin element and Young’s modulus of the Maxwell element. The fact that the Young’s moduli of Maxwell and Kelvin elements in the creep period are different from those in the preload period implies that a stress-induced mesomorphic structure forms or that crystallization occurs in nanoindentation creep. While the strain rate increases with decreasing preload period, the stress exponent factor is almost the same for all preload periods.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).
2.LaFontaine, W.R., Yost, B., Black, R.D., and Li, C.Y.: Indentation load relaxation experiments with indentation depth in the submicron range. J. Mater. Res. 5, 2100 (1990).
3.Syed, S.A. and Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).
4.Feng, G. and Ngan, A.H.W.: The effects of creep on elastic modulus measurement using nanoindentation, in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q7.1.
5.Li, H. and Ngan, A.H.W.: Size effects of nanoindentation creep. J. Mater. Res. 19, 513 (2004).
6.Tang, B., Ngan, A.H.W., and Lu, W.W.: Viscoelastic effects during depth-sensing indentation of cortical bone tissues. Philos. Mag. 86(33–35), 5653 (2006).
7.Jager, A., Lackner, R., and Eberhardsteiner, J.: Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account. Meccanica 42(3), 293 (2007).
8.Oyen, M.L.: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55(11), 3633 (2007).
9.Choi, S.T., Jeong, S.J., and Earmme, Y.Y.: Modified-creep experiment of an elastomer film on a rigid substrate using nanoindentation with a flat-ended cylindrical tip. Scr. Mater. 58(3), 199 (2008).
10.Liu, C.K., Lee, S., Sung, L.P., and Nguyen, T.: Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 100(3), 033503 (2006).
11.Huang, C.C., Wei, M.K., and Lee, S.: Transient and steady-state nanoindentation creep of polymer materials. Int. J. Plast. 27, 1093 (2011).
12.Briscoe, B.J., Fiori, L., and Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys. 31(19), 2395 (1998).
13.Yang, S., Zhang, Y.W., and Zeng, K.: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95(7), 3655 (2004).
14.Tweedie, C.A. and Vliet, K.J.V.: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21(6), 1576 (2006).
15.Goodall, R. and Clyne, T.W.: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54(20), 5489 (2006).
16.Brostow, W. and Hagg Lobland, H.E.: Sliding wear, viscoelasticity, and brittleness of polymers. J. Mater. Res. 21(9), 2422 (2006).
17.Mercier, J.R., Aklonis, J.J., Litt, M., and Tobolsky, A.V.: Viscoelastic behavior of the polycarbonate of bisphenol A. J. Appl. Polym. Sci. 9(2), 447 (1965).
18.Wu, M-S.S.: Intrinsic birefringence of amorphous poly(bisphenol-A carbonate). J. Appl. Polym. Sci. 32, 3263 (2006).
19.Yan, R.J., Ajji, A., Shinozaki, D.M., and Dumoulin, M.M.: Uniaxial drawing behavior of syndiotactic polystyrene. Polymer 41, 1077 (2000).
20.Strojny, A., Xia, X., Tsou, A., and Gerberich, W.W.: Techniques and considerations for nanoindentation measurements of polymer thin film constitutive properties. J. Adhes. Sci. Technol. 12(12), 1299 (1998).
21.D’Aniello, C., Rizzo, P., and Guerra, G.: Polymorphism and mechanical properties of syndiotactic polystyrene films. Polymer 46, 11435 (2005).


Nanoindentation creep in polycarbonate and syndiotactic polystyrene

  • Chien-Chao Huang (a1), Mao-Kuo Wei (a2), Julie P. Harmon (a3) and Sanboh Lee (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed