Skip to main content Accessibility help
×
Home

Nanocrystalline TiO2 powders synthesized by in-flight oxidation of TiN in thermal plasma: Mechanisms of phase selection and particle morphology evolution

  • Seung-Min Oh (a1), Ji-Guang Li (a1) and Takamasa Ishigaki (a1)

Abstract

Titanium dioxide nanopowders were synthesized by in-flight oxidation of titanium nitride (TiN) in radio-frequency (rf) induction thermal plasma. The powders were characterized by x-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy, Raman spectroscopy, and optical microscopy to reveal the mechanisms of phase selection and particle morphology evolution. The reaction began with surface oxidation of TiN particles, leading to the formation of core-shell composites with oxidized shells and TiN cores, followed by gas-phase condensation of TiO2 nanoparticles. Phase selection of the resultant TiO2 powders was found to largely depend on the oxidation potential of the thermal plasma rather than on the heat transfer itself. Anatase content of the products increased steadily with increasing the O2 input, and TiO2 nanoparticles (∼50 nm) containing ∼90% of anatase were obtained through O2/Ar plasma treatment. Phase-pure rutile nanoparticles (∼50 nm, on average) were also synthesized in H2/Ar plasma injected with O2 as the powder carrier gas.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: ISHIGAKI.Takamasa@nims.go.jp

References

Hide All
1.Linsebigler, A.L., Lu, G. and Yates, J.T.: Photocatalysis on TiO2 surfaces—Principle, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).
2.Fujishima, A., Rao, T.N. and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev 1, 1 (2000).
3.Malato, S., Blanco, J., Vidal, A. and Richter, C.: Photocatalysis with solar energy at a pilot-plant scale: An overview. Appl. Catal. Environ. 37, 1 (2002).
4.Oh, S-M., Kim, S-S., Lee, J.E., Ishigaki, T. and Park, D-W.: Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma. Thin Solid Films 435, 252 (2003).
5.Lanata, M., Cherchi, M., Zapettini, A., Pietralunga, S.M. and Martinelli, M.: Titania inverse opals for infrared optical applications. Opt. Mater. 17, 11 (2001).
6.Holland, B.T., Blanford, C.F. and Stein, A.: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538 (1998).
7.Gratzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).
8.Siegel, R.W.: Nanophase materials assembled from atom clusters. Mater. Sci. Eng. B 19, 37 (1993).
9.Lin, H.M., Keng, C.H. and Tung, C.Y.: Hydrogen sulfide detection by nanocrystal PT doped TiO2-based gas sensors. Nanostruct. Mater 6, 1001 (1995).
10.Ovenstone, J.: Preparation of novel titania photocatalysts with high activity. J. Mater. Sci. 36, 1325 (2001).
11.Wang, C.C. and Ying, J.Y.: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113 (1999).
12.Hanley, T.L., Luca, V., Pickering, I. and Howe, R.F.: Structure of titania sol-gel films: A study by x-ray absorption spectroscopy. J. Phys. Chem. B 106, 1153 (2002).
13.Vemury, S., Pratsinis, S.E. and Kibbey, L.: Electrically-controlled flame synthesis of nanophase TiO2, SiO2, and SnO2 powders. J. Mater. Res. 12, 1031 (1997).
14.Vemury, S. and Pratsinis, S.E.: Dopants in flame synthesis of titania. J. Am. Ceram. Soc. 78, 2984 (1995).
15.Jang, H.D. and Kim, S-K.: Controlled synthesis of titanium dioxide nanoparticles in a modified diffusion flame reactor. Mater. Res. Bull. 36, 627 (2001).
16.Li, Y-L. and Ishigaki, T.: Synthesis and structural characterization of titanium oxide and composites by thermal plasma oxidation of titanium carbide. Thin Solid Films 407, 79 (2002).
17.Li, Y-L. and Ishigaki, T.: Synthesis of cryatalline micron spheres of titanium dioxide by thermal plasma oxidation of titanium carbide. Chem. Mater. 13, 1577 (2001).
18.Oh, S-M., Gong, J-G. and Park, D-W.: Synthesis of ultrafine TiO2 powder using thermal plasma. J. Chem. Eng. Jpn. 34, 283 (2001).
19.Boulos, M.I., Fauchais, P. and Pfender, E.: Thermal plasmas: Fundamentals and applications, Vol. 1 (Plenum Press, New York, 1994).
20.Fukumasa, O.: Synthesis of new ceramics from powder mixtures using thermal plasma processing. Thin Solid Films 390, 37 (2001).
21.Ananthapadmanabhan, P.V., Taylor, P.R. and Zhu, W.: Synthesis of titanium nitride in a thermal plasma reactor. J. Alloys Compd. 287, 126 (1999).
22.Rao, N., Girshick, S., Heberlein, J., McMurry, P., Jones, S., Hansen, D. and Micheel, B.: Nanoparticle formation using a plasma expansion process. Plasma Chem. Plasma Process. 15, 581 (1995).
23.Li, Y-L. and Ishigaki, T.: Thermodynamic analysis of nucleation for anatase and rutile from TiO2 melt. J. Cryst. Growth. 242, 511 (2002).
24.Suyama, Y., Ito, K. and Kato, A.: Mechanism of rutile formation in vapor phase oxidation of titanium tetrachloride by oxygen. J. Inorg. Nucl. Chem. 37, 1883 (1975).
25.Oyama, T., Iimura, Y., Takeuchi, K. and Ishii, T.: Synthesis of rutile and anatase TiO2 fine particles by laser-ignited vapour-phase reaction. J. Mater. Sci. Lett. 15, 594 (1996).
26.Syarif, D.G., Miyashita, A., Yamaki, T., Sumita, T., Choi, Y. and Itoh, H.: Preparation of anatase and rutile thin films by controlling oxygen partial pressure. App. Surf. Sci. 193, 287 (2002).
27.Eriksson, G. and Hack, K.: ChemSage Version 4.01. (GTT Technologies, Herzogenrath, Germany, 1998).
28.Spurr, R.A. and Myers, H.: Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29, 760 (1957).
29.Fan, X., Ishigaki, T., Suetsugu, Y., Tanaka, J. and Sato, Y.: In-flight nitridation of molybdenum disilicide powders by an induction plasma. J. Am. Ceram. Soc. 81, 2517 (1998).
30.Roy, R. and White, W.B.: Growth of titanium oxide crystals of controlled stoichiometry and order. J. Cryst. Growth 13/14, 78 (1972).
31.Li, Y-L. and Ishigaki, T.: Core-shell micron-scale composite of titanium oxide and carbide formed through controlled thermal plasma oxidation. Chem. Phys. Lett. 367, 561 (2003).
32.Ohsaka, T., Izumi, F. and Fujiki, Y.: Raman-spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321 (1978).
33.Balachandran, U. and Eror, N.G.: Raman spectra of titanium dioxide. J. Solid State Chem. 42, 276 (1982).
34.Ishigaki, T., Li, Y-L. and Kataoka, E.: Phase formation and microstructure of titanium oxides and composites produced by thermal plasma oxidation of titanium carbide. J. Am. Ceram. Soc. 86, 1456 (2003).
35.Evance, R.C.: An Introduction to Crystal Chemistry, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1966), pp. 180183.
36.Li, Y-L. and Ishigaki, T.: Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J. Phys. Chem. B. 108, 15536 (2004).

Keywords

Nanocrystalline TiO2 powders synthesized by in-flight oxidation of TiN in thermal plasma: Mechanisms of phase selection and particle morphology evolution

  • Seung-Min Oh (a1), Ji-Guang Li (a1) and Takamasa Ishigaki (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed