Skip to main content Accessibility help
×
Home

Nanocrystalline high-entropy alloys

  • Carl C. Koch (a1)

Abstract

This article is a review of research on nanostructured high-entropy alloys with emphasis on those made by the severe plastic deformation methods of mechanical alloying and high-pressure torsion. An example of thin film refractory metal alloys made by magnetron sputtering is also presented. The article will begin with a discussion of the seminal research of B.S. Murty and co-workers who first produced nanocrystalline high-entropy alloys by mechanical alloying of powders. This will be followed by a listing of research, in mostly chronological order, of mainly 3d transition metal alloys made nanocrystalline by mechanical alloying. Research on the well-studied Cantor alloy, from the literature and the author’s laboratory will be presented. The author’s and co-worker’s research on a low-density high-entropy alloy with single-phase fcc or hcp structure and an extremely high strength (hardness)-to-weight ratio will be described.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: carl_koch@ncsu.edu

Footnotes

Hide All

Contributing Editor: Jürgen Eckert

This paper has been selected as an Invited Feature Paper.

Footnotes

References

Hide All
1. Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-Entropy Alloys (Butterworth-Heinemann, Elsevier, Oxford, U.K., 2014); p. 80.
2. Zhang, Y., Koch, C.C., Ma, S.G., Zhang, H., and Pan, Y.: Fabrication routes. In High Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J-W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Switzerland, 2016); pp. 171173.
3. Varalakshmi, S.: Synthesis and characterization of nanocrystalline high entropy alloys by mechanical alloying. Ph.D. thesis, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, 2008.
4. Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 460, 253 (2008).
5. Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Metall. Mater. Trans. A 41, 2703 (2010).
6. Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng., A 527, 1027 (2010).
7. Varalakshmi, S., Appa Rao, G., Kamaraj, M., and Murty, B.S.: Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J. Mater. Sci. 45, 5158 (2010).
8. Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Shi, J., Wang, W.M., Wang, Y.C., and Zhang, Q.J.: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd. 485, L31 (2009).
9. Chen, Y.L., Hu, Y.H., Tsai, C.W., Hsieh, C.A., Kao, S.W., Yeh, J.W., Chin, T.S., and Chen, S.K.: Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying. J. Alloys Compd. 477, 696 (2009).
10. Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Lee, S.W., and Niihara, K.: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495, 33 (2010).
11. Praveen, S., Murty, B.S., and Kottada, R.S.: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).
12. Fu, Z., Chen, W., Fang, S., Zhang, D., Xiao, H., and Zhu, D.: Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J. Alloys Compd. 553, 316 (2013).
13. Tariq, N.H., Naeem, M., Hasan, B.A., Akhter, J.I., and Siddique, M.: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 79 (2013).
14. Pradeep, K.G., Wanderka, N., Choi, P., Banhart, J., Murty, B.S., and Raabe, D.: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater. 61, 4696 (2013).
15. Sriharitha, R., Murty, B.S., and Kottada, R.S.: Phase formation in mechanically alloyed Al x CoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics 32, 119 (2013).
16. Fazakas, E., Varga, B., and Varga, L.K.: Processing and properties of nanocrystalline CoCrFeNiCuAlTiXVMo (X = Zn, Mn) high entropy alloys by mechanical alloying. ISRN Mech. Eng. 2013, http://dx.doi.org/10.1155/2013/167869 (2013).
17. Mohanty, S., Gurao, N.P., and Biswas, K.: Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 via mechanical alloying. Mater. Sci. Eng., A 617, 211 (2014).
18. Ji, W., Fu, Z., Wang, W., Wang, H., Zhang, J., Wang, Y., and Zhang, F.: Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high entropy alloy. J. Alloys Compd. 589, 61 (2014).
19. Babu, C.S., Sivaprasad, K., Muthupandi, Y., and Szpunar, J.A.: Characterization of nanocrystalline AlCoCrCuNiFeZn high entropy alloy produced by mechanical alloying. Procedia Mater. Sci. 5, 1020 (2014).
20. Fu, Z., Chen, W., Wen, H., Morgan, S., Chen, F., Zheng, B., Zhou, Y., Zhang, L., and Lavernia, E.J.: Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 644, 10 (2015).
21. Fu, Z., Chen, W., Wen, H., Chen, Z., and Lavernia, E.J.: Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175 (2015).
22. Tang, Q.H., Huang, Y., Huang, Y.Y., Liao, X.Z., Langdon, T.G., and Dai, P.Q.: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 151, 126 (2015).
23. Mohanty, S., Maity, T.N., Mukhopadhyay, S., Sarkar, S., Gurao, N.P., Bhowmick, S., and Biswas, K.: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).
24. Zhou, N., Hu, T., Huang, J., and Luo, J.: Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr. Mater. 124, 160 (2016).
25. Fu, Z., Chen, W., Wen, H., Zhang, D., Chen, Z., Zheng, B., Zhou, Y., and Lavernia, E.J.: Microstructure and strengthening mechanisms in an fcc structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).
26. Zhou, Y., Ma, H., and Spolenak, R.: Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015).
27. Zou, Y., Wheeler, J.M., Ma, H., Okle, P., and Spolenak, R.: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 1569 (2017).
28. Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).
29. Schuh, B., Mendez-Martin, F., Volker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure, and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).
30. Pickering, E.J., Munoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).
31. Zaddach, A.J., Niu, C., Koch, C.C., and Irving, D.L.: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65, 1780 (2013).
32. Leoni, M., Confente, T., and Scardi, P.: PM2K: a flexible program implementing Whole Powder Pattern Modelling. Z. Kristallogr. 23, 249 (2006).
33. Schramm, R.E. and Reed, R.P.: Stacking fault energies of fcc Fe–Ni alloy by X-ray diffraction line profile analysis. Metall. Trans. A 7, 359 (1976).
34. Lee, D-H., Choi, I-C., Seok, M-Y., He, J., Lu, Z., Suh, J-Y., Kawasaki, M., and Langdon, T.G.: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).
35. Shahmir, H., He, J., Lu, Z., Kawasaki, M., and Langdon, T.G.: Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 685, 342 (2017).
36. Shahmir, H., Nili-Ahmadabadi, M., Shafie, A., and Langdon, T.B.: Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi0.1 high entropy alloy processed by high-pressure torsion. IOP Conf. Ser.: Mater. Sci. Eng. 194, 012017 (2017).
37. Heczel, A., Kawasaki, M., Labar, J.L., Jang, J-I., Langdon, T.G., and Gubicza, J.: Defect structure and hardness in nanocrystalline CoCrFeMnNi high-entropy alloy processed by high-pressure torsion. J. Alloys Compd. 711, 143 (2017).
38. Liu, Y., Wang, J., Fang, Q., Liu, B., Wu, Y., and Chen, S.: Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics 68, 16 (2016).
39. Maier-Kiener, V., Schuh, B., George, E.P., Clemens, H., and Hohenwarter, A.: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Mater. Des. 115, 479 (2017).
40. Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entrophy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).

Keywords

Related content

Powered by UNSILO

Nanocrystalline high-entropy alloys

  • Carl C. Koch (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.