Skip to main content Accessibility help
×
×
Home

A multiscale study of misfit dislocations in PbTe/PbSe(001) heteroepitaxy

  • Yang Li (a1), Zhaochuan Fan (a2), Weixuan Li (a1), David L. McDowell (a3) and Youping Chen (a1)...

Abstract

In this work, we investigate misfit dislocations in PbTe/PbSe heteroepitaxial systems using the concurrent atomistic–continuum (CAC) method. A potential model containing the long-range Coulombic interaction and short-range Buckingham potential is developed for the system. By considering the minimum potential energy of relaxed interface structures for various initial conditions and PbTe layer thicknesses, the equilibrium structure of misfit dislocations and the dislocation spacings in PbTe/PbSe(001) heteroepitaxial thin films are obtained as a function of the PbTe layer thicknesses grown on a PbSe substrate. The critical layer thickness above which misfit dislocations inevitably form, the structure of the misfit dislocations at the interfaces, and the dependence of average dislocation spacing on PbTe layer thickness are obtained and discussed. The simulation results provide an explanation for the narrowing of the spread of the distribution of misfit dislocation spacing as layer thickness increases in PbTe/PbSe(001) heteroepitaxy.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A multiscale study of misfit dislocations in PbTe/PbSe(001) heteroepitaxy
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A multiscale study of misfit dislocations in PbTe/PbSe(001) heteroepitaxy
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A multiscale study of misfit dislocations in PbTe/PbSe(001) heteroepitaxy
      Available formats
      ×

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: yangli1991@ufl.edu

References

Hide All
1.Frank, F.C. and Van der Merwe, J.H.: One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth. Proc. R. Soc. London, Ser. A 198, 216225 (1949).
2.Ball, C.A.B. and Van der Merwe, J.H.: Dislocations in Solids, Nabarro, F.R.N., ed. (North-Holland, Amsterdam, 1983); p. 123.
3.Matthews, J.W. and Blakeslee, A.E.: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118125 (1974).
4.Matthews, J.W.: Defects associated with the accommodation of misfit between crystals. J. Vac. Sci. Technol. 12, 126133 (1975).
5.Hull, R. and Bean, J.C.: Misfit dislocations in lattice-mismatched epitaxial films. Crit. Rev. Solid State Mater. Sci. 17, 507546 (1992).
6.Ernst, F.: Interface dislocations forming during epitaxial growth of GeSi on (111) Si substrates at high temperatures. Mater. Sci. Eng., A 233, 126138 (1997).
7.Schwarz, K.W.: Simulation of dislocations on the mesoscopic scale. II. Application to strained-layer relaxation. J. Appl. Phys. 85, 120129 (1999).
8.Mooney, P.M. and Chu, J.O.: SiGe technology: Heteroepitaxy and high-speed microelectronics. Annu. Rev. Mater. Sci. 30, 335362 (2000).
9.Sangghaleh, A. and Demkowicz, M.J.: AIDA: A tool for exhaustive enumeration of solutions to the quantized Frank–Bilby equation. Comput. Mater. Sci. 145, 3547 (2018).
10.Schneider, M., Rahman, A., and Schuller, I.K.: Role of relaxation in epitaxial growth: A molecular-dynamics study. Phys. Rev. Lett. 55, 604 (1985).
11.Yu, W. and Madhukar, A.: Molecular dynamics study of coherent island energetics, stresses, and strains in highly strained epitaxy. Phys. Rev. Lett. 79, 905 (1997).
12.Dong, L., Schnitker, J., Smith, R.W., and Srolovitz, D.J.: Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study. J. Appl. Phys. 83, 217227 (1998).
13.Gruber, J., Zhou, X.W., Jones, R.E., Lee, S.R., and Tucker, G.J.: Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces. J. Appl. Phys. 121, 195301 (2017).
14.Kubo, M., Miura, R., Yamauchi, R., Vetrivel, R., and Miyamoto, A.: Mechanism of the formation of ultrafine gold particles on MgO(100) as investigated by molecular dynamics and computer graphics. Appl. Surf. Sci. 89, 131139 (1995).
15.Zhang, J., Liu, C., Shu, Y., and Fan, J.: Growth and properties of Cu thin film deposited on Si(001) substrate: A molecular dynamics simulation study. Appl. Surf. Sci. 261, 690696 (2012).
16.Meng, L., Sun, Q., Wang, J., and Ding, F.: Molecular dynamics simulation of chemical vapor deposition graphene growth on Ni(111) surface. J. Phys. Chem. C 116, 60976102 (2012).
17.Cheng, Y-T., Liang, T., Nie, X., Choudhary, K., Phillpot, S.R., Asthagiri, A., and Sinnott, S.B.: Cu cluster deposition on ZnO$\left( {10\bar{1}0} \right)$: Morphology and growth mode predicted from molecular dynamics simulations. Surf. Sci. 621, 109116 (2014).
18.Hassani, A., Makan, A., Sbiaai, K., Tabyaoui, A., and Hasnaoui, A.: Molecular dynamics study of growth and interface structure during aluminum deposition on Ni(100) substrate. Appl. Surf. Sci. 349, 785791 (2015).
19.Xiong, L., Deng, Q., Tucker, G.J., McDowell, D.L., and Chen, Y.: Coarse-grained atomistic simulations of dislocations in Al, Ni, and Cu crystals. Int. J. Plast. 38, 86101 (2012).
20.Xiong, L., McDowell, D.L., and Chen, Y.: Nucleation and growth of dislocation loops in Cu, Al, and Si by a concurrent atomistic-continuum method. Scr. Mater. 67, 633636 (2012).
21.Xiong, L., Tucker, G., McDowell, D.L., and Chen, Y.: Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids 59, 160177 (2011).
22.Xu, S., Xiong, L., Chen, Y., and McDowell, D.: Validation of the concurrent atomistic-continuum method on screw dislocation/stacking fault interactions. Crystals 7, 120 (2017).
23.Xiong, L., Rigelesaiyin, J., Chen, X., Xu, S., McDowell, D.L., and Chen, Y.: Coarse-grained elastodynamics of fast moving dislocations. Acta Mater. 104, 143155 (2016).
24.Xiong, L., Xu, S., McDowell, D.L., and Chen, Y.: Concurrent atomistic–continuum simulations of dislocation–void interactions in fcc crystals. Int. J. Plast. 65, 3342 (2015).
25.Chen, X., Li, W., Xiong, L., Li, Y., Yang, S., Zheng, Z., McDowell, D., and Chen, Y.: Ballistic-diffusive phonon heat transport across grain boundaries. Acta Mater. 136, 355365 (2017).
26.Yang, S. and Chen, Y.: Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary. Proc. R. Soc. London, Ser. A 471 (2015).
27.Yang, S., Zhang, N., and Chen, Y.: Concurrent atomistic-continuum simulation of polycrystalline strontium titanate. Philos. Mag. 95, 26972716 (2015).
28.Chen, Y., Zimmerman, J., Krivtsov, A., and McDowell, D.: Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci 49, 13371349 (2011).
29.Chen, Y. and Lee, J.: Atomistic formulation of a multiscale field theory for nano/micro solids. Philos. Mag. 85, 40954126 (2005).
30.Chen, Y.: Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130, 134706 (2009).
31.Chen, Y. and Diaz, A.: Local momentum and heat fluxes in transient transport processes and inhomogeneous systems. Phys. Rev. E 94, 053309 (2016).
32.Chen, Y.: The origin of the distinction between microscopic formulas for stress and Cauchy stress. Europhys. Lett. 116, 34003 (2016).
33.Chen, Y. and Diaz, A.: Physical foundation and consistent formulation of atomic-level fluxes in transport processes. Phys. Rev. E 98, 052113 (2018).
34.Chen, Y.: Local stress and heat flux in atomistic systems involving three-body forces. J. Chem. Phys. 124, 054113 (2006).
35.Irving, J. and Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817829 (1950).
36.Xu, S., Xiong, L., Chen, Y., and McDowell, D.L.: Edge dislocations bowing out from a row of collinear obstacles in Al. Scr. Mater. 123, 135139 (2016).
37.Xu, S., Xiong, L., Chen, Y., and McDowell, D.L.: Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: A concurrent atomistic-continuum study 2, 15016 (2016).
38.Springholz, G. and Wiesauer, K.: Nanoscale dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy. Phys. Rev. Lett. 88, 015507 (2001).
39.Wiesauer, K. and Springholz, G.: Strain relaxation and dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy. Appl. Surf. Sci. 188, 4954 (2002).
40.Stukowski, A. and Albe, K.: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell. Simul. Mater. Sci. Eng. 18, 085001 (2010).
41.Fan, Z., Koster, R.S., Wang, S., Fang, C., Yalcin, A.O., Tichelaar, F.D., Zandbergen, H.W., van Huis, M.A., and Vlugt, T.J.H.: A transferable force field for CdS–CdSe–PbS–PbSe solid systems. J. Chem. Phys. 141, 244503 (2014).
42.Dalven, R.: A review of the semiconductor properties of PbTe, PbSe, PbS, and PbO. Infrared Phys. 9, 141184 (1969).
43.Miller, A.J., Saunders, G.A., and Yogurtcu, Y.K.: Pressure dependences of the elastic constants of PbTe, SnTe and Ge0.08Sn0.92Te. J. Phys. C: Solid State Phys. 14, 1569 (1981).
44.Rawat, P.K., Paul, B., and Banerji, P.: Thermoelectric properties of PbSe0.5Te0.5: x (PbI2) with endotaxial nanostructures: A promising n-type thermoelectric material. Nanotechnology 24, 215401 (2013).
45.Rittner, J.D. and Seidman, D.N.: 〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies. Phys. Rev. B 54, 6999 (1996).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed