Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T13:40:56.184Z Has data issue: false hasContentIssue false

The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

Published online by Cambridge University Press:  07 August 2013

Na Wang
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
Kyriakos Komvopoulos*
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
*
a)Address all correspondence to this author. e-mail: kyriakos@me.berkeley.edu
Get access

Abstract

The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp3 fraction, a relatively thicker layer (bulk film) of constant sp3 content, and an ultrathin surface layer rich in sp2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129 (2002).CrossRefGoogle Scholar
Monteiro, O.R.: Thin film synthesis by energetic condensation. Annu. Rev. Mater. Res. 31, 111 (2001).CrossRefGoogle Scholar
Brown, I.G.: Cathodic arc deposition of films. Annu. Rev. Mater. Sci. 28, 243 (1998).CrossRefGoogle Scholar
Voevodin, A.A. and Donley, M.S.: Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review. Surf. Coat. Technol. 82, 199 (1996).CrossRefGoogle Scholar
Fung, M.K., Lai, K.H., Chan, C.Y., Bello, I., Lee, C.S., Lee, S.T., Mao, D.S., and Wang, X.: Mechanical properties and corrosion studies of amorphous carbon on magnetic disks prepared by ECR plasma technique. Thin Solid Films 368, 198 (2000).CrossRefGoogle Scholar
Hauert, R.: An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int. 37, 991 (2004).CrossRefGoogle Scholar
Erdemir, A. and Donnet, C.: Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D: Appl. Phys. 39, R311 (2006).CrossRefGoogle Scholar
Zhang, H.-S. and Komvopoulos, K.: Synthesis of ultrathin carbon films by direct current filtered cathodic vacuum arc. J. Appl. Phys. 105, 083305 (2009).CrossRefGoogle Scholar
Díaz, J., Paolicelli, G., Ferrer, S., and Comin, F.. Separation of the sp 3 and sp 2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B 54, 8064 (1996).CrossRefGoogle ScholarPubMed
Yasui, N., Inaba, H., Furusawa, K., Saito, M., and Ohtake, N.: Characterization of head overcoat for 1 Tb/in2 magnetic recording. IEEE Trans. Magn. 45, 805 (2009).CrossRefGoogle Scholar
Zhu, J., Han, J., Han, X., Schlaberg, H.I., and Wang, J.: sp 3-rich deposition conditions and growth mechanism of tetrahedral amorphous carbon films deposited using filtered arc. J. Appl. Phys. 104, 013512 (2008).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J.: Raman spectroscopy of amorphous, nanosrtructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362, 2477 (2004).CrossRefGoogle ScholarPubMed
Ferrari, A.C. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
Knight, D.S. and White, W.B.: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
Oswald, S. and Reiche, R.: Binding state information from XPS depth profiling: Capabilities and limits. Appl. Surf. Sci. 179, 307 (2001).CrossRefGoogle Scholar
Poudel, P.R., Poudel, P.P., Rout, B., El Bouanani, M., and McDaniel, F.D.: An XPS study to investigate the dependence of carbon ion fluences in the formation of buried SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 283, 93 (2012).CrossRefGoogle Scholar
Siegal, M.P., Provencio, P.N., Tallant, D.R., Simpson, R.L., Kleinsorge, B., and Milne, W.I.: Bonding topologies in diamondlike amorphous-carbon films. Appl. Phys. Lett. 76, 2047 (2000).CrossRefGoogle Scholar
Davis, C.A., Amaratunga, G.A.J., and Knowles, K.M.: Growth mechanism and cross-sectional structure of tetrahedral amorphous carbon thin films. Phys. Rev. Lett. 80, 3280 (1998).CrossRefGoogle Scholar
Davis, C.A., Knowles, K.M., and Amaratunga, G.A.J.: Cross-sectional structure of tetrahedral amorphous carbon thin films. Surf. Coat. Technol. 7677, 316 (1995).CrossRefGoogle Scholar
Riedo, E., Comin, F., Chevrier, J., Schmithusen, F., Decossas, S., and Sancrotti, M.: Structural properties and surface morphology of laser-deposited amorphous carbon and carbon nitride films. Surf. Coat. Technol. 125, 124 (2000).CrossRefGoogle Scholar
Lifshitz, Y., Kasi, S.R., Rabalais, J.W., and Eckstein, W.: Subplantation model for film growth from hyperthermal species. Phys. Rev. B 41, 10468 (1990).CrossRefGoogle ScholarPubMed
Pharr, G.M., Callahan, D.L., McAdams, S.D., Tsui, T.Y., Anders, S., Anders, A., Ager, J.W. III, Brown, I.G., Bhatia, C.S., Silva, S.R.P., and Robertson, J.: Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing. Appl. Phys. Lett. 68, 779 (1996).CrossRefGoogle Scholar
Robertson, J.: Requirements of ultrathin carbon coatings for magnetic storage technology. Tribol. Int. 36, 405 (2003).CrossRefGoogle Scholar
Robertson, J.: Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383, 81 (2001).CrossRefGoogle Scholar
Byon, E. and Anders, A.: Ion energy distribution functions of vacuum arc plasmas. J. Appl. Phys. 93, 1899 (2003).CrossRefGoogle Scholar
Zhang, H.-S. and Komvopoulos, K.: Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization. Rev. Sci. Instrum. 79, 073905 (2008).CrossRefGoogle ScholarPubMed
Wang, N. and Komvopoulos, K.: Incidence angle effect of energetic carbon ions on deposition rate, topography, and structure of ultrathin amorphous carbon films deposited by filtered cathodic vacuum arc. IEEE Trans. Magn. 48, 2220 (2012).CrossRefGoogle Scholar
Wan, D. and Komvopoulos, K.: Transmission electron microscopy and electron energy loss spectroscopy analysis of ultrathin amorphous carbon films. J. Mater. Res. 19, 2131 (2004).CrossRefGoogle Scholar
Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009). Chapter 37, pp. 679681.CrossRefGoogle Scholar
Egerton, R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. (Springer, New York, 2011). Chapter 3, pp. 111229.CrossRefGoogle Scholar
Egerton, R.F.: Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009).CrossRefGoogle Scholar
Olevano, V. and Reining, L.: Excitonic effects on the silicon plasmon resonance. Phys. Rev. Lett. 86, 5962 (2001).CrossRefGoogle ScholarPubMed
McKenzie, D.R., Muller, D., and Pailthorpe, B.A.: Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773 (1991).CrossRefGoogle ScholarPubMed
Duarte-Moller, A., Espinosa-Magana, F., Martinez-Sanchez, R., Avalos-Borja, M., Hirata, G.A., and Cota-Araiza, L.: Study of different forms of carbon by analytical electron microscopy. J. Electron Spectrosc. Relat. Phenom. 104, 61 (1999).CrossRefGoogle Scholar
Berger, S.D., McKenzie, D.R., and Martin, P.J.: EELS analysis of vacuum arc-deposited diamond-like films. Philos. Mag. Lett. 57, 285 (1988).CrossRefGoogle Scholar
Cuomo, J.J., Doyle, J.P., Bruley, J., and Liu, J.C.: Sputter deposition of dense diamond-like carbon films at low temperature. Appl. Phys. Lett. 58, 466 (1991).CrossRefGoogle Scholar
Iwanowski, R.J., Fronc, K., Paszkowicz, W., and Heinonen, M.: XPS and XRD study of crystalline 3C-SiC grown by sublimation method. J. Alloys Compd. 286, 143 (1999).CrossRefGoogle Scholar
Wan, D. and Komvopoulos, K.: Tetrahedral and trigonal carbon atom hybridization in thin amorphous carbon films synthesized by radio-frequency sputtering. J. Phys. Chem. C 111, 9891 (2007).CrossRefGoogle Scholar
Tanuma, S., Powell, C.J., and Penn, D.R.: Calculations of electron inelastic mean free paths II. Data for 27 elements over the 50-2000 eV range. Surf. Interface Anal. 17, 911 (1991).CrossRefGoogle Scholar
Gries, W.H.: A universal predictive equation for the inelastic mean free pathlengths of X-ray photoelectrons and Auger electrons. Surf. Interface Anal. 24, 38 (1996).3.0.CO;2-H>CrossRefGoogle Scholar