Skip to main content Accessibility help

The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

  • Na Wang (a1) and Kyriakos Komvopoulos (a1)


The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp3 fraction, a relatively thicker layer (bulk film) of constant sp3 content, and an ultrathin surface layer rich in sp2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129 (2002).
2.Monteiro, O.R.: Thin film synthesis by energetic condensation. Annu. Rev. Mater. Res. 31, 111 (2001).
3.Brown, I.G.: Cathodic arc deposition of films. Annu. Rev. Mater. Sci. 28, 243 (1998).
4.Voevodin, A.A. and Donley, M.S.: Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review. Surf. Coat. Technol. 82, 199 (1996).
5.Fung, M.K., Lai, K.H., Chan, C.Y., Bello, I., Lee, C.S., Lee, S.T., Mao, D.S., and Wang, X.: Mechanical properties and corrosion studies of amorphous carbon on magnetic disks prepared by ECR plasma technique. Thin Solid Films 368, 198 (2000).
6.Hauert, R.: An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int. 37, 991 (2004).
7.Erdemir, A. and Donnet, C.: Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D: Appl. Phys. 39, R311 (2006).
8.Zhang, H.-S. and Komvopoulos, K.: Synthesis of ultrathin carbon films by direct current filtered cathodic vacuum arc. J. Appl. Phys. 105, 083305 (2009).
9.Díaz, J., Paolicelli, G., Ferrer, S., and Comin, F.. Separation of the sp 3 and sp 2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B 54, 8064 (1996).
10.Yasui, N., Inaba, H., Furusawa, K., Saito, M., and Ohtake, N.: Characterization of head overcoat for 1 Tb/in2 magnetic recording. IEEE Trans. Magn. 45, 805 (2009).
11.Zhu, J., Han, J., Han, X., Schlaberg, H.I., and Wang, J.: sp 3-rich deposition conditions and growth mechanism of tetrahedral amorphous carbon films deposited using filtered arc. J. Appl. Phys. 104, 013512 (2008).
12.Ferrari, A.C. and Robertson, J.: Raman spectroscopy of amorphous, nanosrtructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362, 2477 (2004).
13.Ferrari, A.C. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).
14.Knight, D.S. and White, W.B.: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385 (1989).
15.Oswald, S. and Reiche, R.: Binding state information from XPS depth profiling: Capabilities and limits. Appl. Surf. Sci. 179, 307 (2001).
16.Poudel, P.R., Poudel, P.P., Rout, B., El Bouanani, M., and McDaniel, F.D.: An XPS study to investigate the dependence of carbon ion fluences in the formation of buried SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 283, 93 (2012).
17.Siegal, M.P., Provencio, P.N., Tallant, D.R., Simpson, R.L., Kleinsorge, B., and Milne, W.I.: Bonding topologies in diamondlike amorphous-carbon films. Appl. Phys. Lett. 76, 2047 (2000).
18.Davis, C.A., Amaratunga, G.A.J., and Knowles, K.M.: Growth mechanism and cross-sectional structure of tetrahedral amorphous carbon thin films. Phys. Rev. Lett. 80, 3280 (1998).
19.Davis, C.A., Knowles, K.M., and Amaratunga, G.A.J.: Cross-sectional structure of tetrahedral amorphous carbon thin films. Surf. Coat. Technol. 7677, 316 (1995).
20.Riedo, E., Comin, F., Chevrier, J., Schmithusen, F., Decossas, S., and Sancrotti, M.: Structural properties and surface morphology of laser-deposited amorphous carbon and carbon nitride films. Surf. Coat. Technol. 125, 124 (2000).
21.Lifshitz, Y., Kasi, S.R., Rabalais, J.W., and Eckstein, W.: Subplantation model for film growth from hyperthermal species. Phys. Rev. B 41, 10468 (1990).
22.Pharr, G.M., Callahan, D.L., McAdams, S.D., Tsui, T.Y., Anders, S., Anders, A., Ager, J.W. III, Brown, I.G., Bhatia, C.S., Silva, S.R.P., and Robertson, J.: Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing. Appl. Phys. Lett. 68, 779 (1996).
23.Robertson, J.: Requirements of ultrathin carbon coatings for magnetic storage technology. Tribol. Int. 36, 405 (2003).
24.Robertson, J.: Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383, 81 (2001).
25.Byon, E. and Anders, A.: Ion energy distribution functions of vacuum arc plasmas. J. Appl. Phys. 93, 1899 (2003).
26.Zhang, H.-S. and Komvopoulos, K.: Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization. Rev. Sci. Instrum. 79, 073905 (2008).
27.Wang, N. and Komvopoulos, K.: Incidence angle effect of energetic carbon ions on deposition rate, topography, and structure of ultrathin amorphous carbon films deposited by filtered cathodic vacuum arc. IEEE Trans. Magn. 48, 2220 (2012).
28.Wan, D. and Komvopoulos, K.: Transmission electron microscopy and electron energy loss spectroscopy analysis of ultrathin amorphous carbon films. J. Mater. Res. 19, 2131 (2004).
29.Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009). Chapter 37, pp. 679681.
30.Egerton, R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. (Springer, New York, 2011). Chapter 3, pp. 111229.
31.Egerton, R.F.: Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009).
32.Olevano, V. and Reining, L.: Excitonic effects on the silicon plasmon resonance. Phys. Rev. Lett. 86, 5962 (2001).
33.McKenzie, D.R., Muller, D., and Pailthorpe, B.A.: Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773 (1991).
34.Duarte-Moller, A., Espinosa-Magana, F., Martinez-Sanchez, R., Avalos-Borja, M., Hirata, G.A., and Cota-Araiza, L.: Study of different forms of carbon by analytical electron microscopy. J. Electron Spectrosc. Relat. Phenom. 104, 61 (1999).
35.Berger, S.D., McKenzie, D.R., and Martin, P.J.: EELS analysis of vacuum arc-deposited diamond-like films. Philos. Mag. Lett. 57, 285 (1988).
36.Cuomo, J.J., Doyle, J.P., Bruley, J., and Liu, J.C.: Sputter deposition of dense diamond-like carbon films at low temperature. Appl. Phys. Lett. 58, 466 (1991).
37.Iwanowski, R.J., Fronc, K., Paszkowicz, W., and Heinonen, M.: XPS and XRD study of crystalline 3C-SiC grown by sublimation method. J. Alloys Compd. 286, 143 (1999).
38.Wan, D. and Komvopoulos, K.: Tetrahedral and trigonal carbon atom hybridization in thin amorphous carbon films synthesized by radio-frequency sputtering. J. Phys. Chem. C 111, 9891 (2007).
39.Tanuma, S., Powell, C.J., and Penn, D.R.: Calculations of electron inelastic mean free paths II. Data for 27 elements over the 50-2000 eV range. Surf. Interface Anal. 17, 911 (1991).
40.Gries, W.H.: A universal predictive equation for the inelastic mean free pathlengths of X-ray photoelectrons and Auger electrons. Surf. Interface Anal. 24, 38 (1996).

Related content

Powered by UNSILO

The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

  • Na Wang (a1) and Kyriakos Komvopoulos (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.