Skip to main content Accessibility help

A multilayered flexible piezoresistive sensor for wide-ranged pressure measurement based on CNTs/CB/SR composite

  • Ying Huang (a1), Weihua Wang (a2), Zhiguang Sun (a2), Yue Wang (a2), Ping Liu (a2) and Caixia Liu (a2)...


To optimize the structure of the flexible piezoresistive sensor based on conductive polymer composite and widen the workable pressure range, a piezoresistive sensor with a multilayered structure based on carbon nanotubes/carbon black/silicone rubber conductive composite was designed and investigated. Different from the traditional monolayer structure, this novel multilayered sensor consisted of three microstructured piezoresistive composite films. The experimental data showed that the electrical resistance of the sensor varied regularly with a wide range of applied pressure (0–1.8 MPa at least). The high sensitivity, high flexibility, facile fabrication, and low cost were also the advantages of this pressure sensor. In addition, the piezoresistive mechanism was studied and shown to be the synergistic effects of the contact resistance mechanism and bulk resistance mechanism. Factors influencing the piezoresistive properties were also investigated. Moreover, the consecutive loading tests verified the feasibility and stability to use this sensor element for pressure measurement.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Wagner, S., Lacour, S.P., Jones, J., Hsu, P.H.I., Sturm, J.C., Li, T., and Suo, Z.: Electronic skin: Architecture and components. Phys. E 25, 326 (2004).
2. Lumpkin, E.A. and Caterina, M.J.: Mechanisms of sensory transduction in the skin. Nature 445, 858 (2007).
3. Hoshi, T. and Shinoda, H.: A tactile sensing element for a whole body robot skin. Int. Symp. Rob. 36, 31 (2005).
4. Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T.: Human-like artificial robot skin. Proc. Natl. Acad. Sci. U. S. A. 102, 35 (2005).
5. Tian, M., Huang, Y., Wang, W., Li, R., Liu, P., Liu, C., and Zhang, Y.: Temperature-dependent electrical properties of graphene nanoplatelets film dropped on flexible substrates. J. Mater. Res. 29, 1288 (2014).
6. Wang, D., Huang, Y., Ma, Y., Liu, P., Liu, C., and Zhang, Y.: Research on highly sensitive humidity sensor based on Tr-MWCNT/HEC composite films. J. Mater. Res. 29, 2845 (2014).
7. Zhou, D. and Wang, H.: Design and evaluation of a skin-like sensor with high stretchability for contact pressure measurement. Sens. Actuators, A 204, 114 (2013).
8. Cotton, D.P., Graz, I.M., and Lacour, S.P.: A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens. J. 9, 2008 (2009).
9. Li, P. and Wen, Y.: An arbitrarily distributed tactile piezoelectric sensor array. Sens. Actuators, A 65, 141 (1998).
10. Stassi, S., Cauda, V., Canavese, G., and Pirri, C.F.: Flexible tactile sensing based on piezoresistive composites: A review. Sensors 14, 5296 (2014).
11. Yang, Y.J., Cheng, M.Y., Chang, W.Y., Tsao, L.C., Yang, S.A., Shih, W.P., Chang, F.Y., Changa, S.H., and Fan, K.C.: An integrated flexible temperature and tactile sensing array using PI-copper films. Sens. Actuators, A 143, 143 (2008).
12. Canavese, G., Stassi, S., Stralla, M., Bignardi, C., and Pirri, C.F.: Stretchable and conformable metal–polymer piezoresistive hybrid system. Sens. Actuators, A 186, 191 (2012).
13. Yu, X. and Kwon, E.: A carbon nanotube/cement composite with piezoresistive properties. Smart Mater. Struct. 18, 055010 (2009).
14. Yoshimuraa, K., Nakanoa, K., Okamotoa, K., and Miyakeb, T.: Mechanical and electrical properties in porous structure of Ketjenblack/silicone–rubber composites. Sens. Actuators, A 180, 55 (2012).
15. Chen, B.L., Chen, G.H., and Lu, L.: Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv. Funct. Mater. 17, 898 (2007).
16. Bao, S.P., Liang, G.D., and Tjong, S.C.: Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly (vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon 49, 1758 (2011).
17. Cheng, Q., Bao, J., Park, J., Liang, Z., Zhang, C., and Wang, B.: High mechanical performance composite conductor: Multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv. Funct. Mater. 19, 3219 (2009).
18. Tamburrano, A., Sarasini, F., De Bellis, G., D’Aloia, A.G., and Sarto, M.S.: The piezoresistive effect in graphene-based polymeric composites. Nanotechnology 24, 465702 (2013).
19. Cravanzola, S., Haznedar, G., Scarano, D., Zecchina, A., and Cesano, F.: Carbon-based piezoresistive polymer composites: Structure and electrical properties. Carbon 62, 270 (2013).
20. Arboleda, L., Ares, A., Abad, M.J., Ferreira, A., Costa, P., and Lanceros-Mendez, S.: Piezoresistive response of carbon nanotubes-polyamides composites processed by extrusion. J. Polym. Res. 20, 1 (2013).
21. Kumar, S., Sun, L.L., Caceres, S., Li, B., Wood, W., Perugini, A., Maguire, R.G., and Zhong, W.H.: Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 21, 105702 (2010).
22. Sun, Y., Bao, H.D., Guo, Z.X., and Yu, J.: Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42, 459 (2008).
23. Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., and Bao, Z.: An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 3002 (2014).
24. Park, J., Lee, Y., Hong, J., Ha, M., Jung, Y.D., Lim, H., and Ko, H.: Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8, 4689 (2014).
25. Choong, C.L., Shim, M.B., Lee, B.S., Jeon, S., Ko, D.S., Kang, T.H., and Chung, U.I.: Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26, 3451 (2014).
26. Park, J., Lee, Y., Lim, S., Lee, Y., Jung, Y., Lim, H., and Ko, H.: Ultrasensitive piezoresistive pressure sensors based on interlocked micropillar arrays. BioNanoSci. 4, 349 (2014).
27. Wang, L. and Li, J.: A piezoresistive flounder element based on conductive polymer composite. Sens. Actuators, A 216, 214 (2014).
28. Liu, X.M., Gao, F., Cai, W.T., Liu, P., Miu, W., and Huang, Y.: Analysis of pressure-resistance calculating model of carbon nanotubes/carbon black/silicone rubber composite material. J. Funct. Mater. 44, 669 (2013).
29. Alig, I., Lellinger, D., Engel, M., Skipa, T., and Pötschke, P.: Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer 49, 1902 (2008).
30. Zhang, R., Dowden, A., Deng, H., Baxendale, M., and Peijs, T.: Conductive network formation in the melt of carbon nanotube/thermoplastic polyurethane composite. Compos. Sci. Technol. 69, 1499 (2009).
31. Gao, J.F., Li, Z.M., Meng, Q.J., and Yang, Q.: CNTs/UHMWPE composites with a two-dimensional conductive network. Mater. Lett. 62, 3530 (2008).
32. Zhang, W., Dehghani-Sanij, A.A., and Blackburn, R.S.: Carbon based conductive polymer composites. J. Mater. Sci. 42, 3408 (2007).


A multilayered flexible piezoresistive sensor for wide-ranged pressure measurement based on CNTs/CB/SR composite

  • Ying Huang (a1), Weihua Wang (a2), Zhiguang Sun (a2), Yue Wang (a2), Ping Liu (a2) and Caixia Liu (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed