Skip to main content Accessibility help
×
Home

Multiferroic CoFe2O4–BiFeO3 core–shell nanofibers and their nanoscale magnetoelectric coupling

  • Qingfeng Zhu (a1), Ying Xie (a1), Jing Zhang (a1), Yuanming Liu (a2), Qingfeng Zhan (a3), Hongchen Miao (a4) and Shuhong Xie (a5)...

Abstract

Multiferroic CoFe2O4–BiFeO3 (CFO–BFO) core–shell nanofibers were synthesized by coaxial electrospinning. The spinel structure of CFO and perovskite structure of BFO were confirmed by x-ray diffraction and high-resolution transmission electron microscopy. The core–shell configuration of nanofibers was verified by scanning electron microscopy and transmission electron microscopy images. The macroscopic ferromagnetic property of core–shell nanofibers was demonstrated by magnetic hysteresis loop. The local magnetoelectric (ME) coupling was confirmed by using dual frequency piezoresponse force microscopy (PFM) under an external magnetic field, showing magnetically induced evolution of piezoresponse and domain structure. The ferroelectric characteristics are demonstrated by the switching spectroscopy PFM. From PFM hysteresis and butterfly loops, it is observed that the piezoresponse amplitude is reduced while coercive voltage increased under external in-plane magnetic field, induced through the mechanical interactions between magnetostrictive CFO and piezoelectric BFO, from which the lateral ME coupling can be estimated quantitatively. The nanofibers thus can find a variety of applications as a one-dimensional multiferroic material.

Copyright

Corresponding author

b) Address all correspondence to this author. e-mail: shxie@xtu.edu.cn

References

Hide All
1. Smolenskiĭ, G. and Chupis, I.: Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982).
2. Dey, P., Nath, T., Nanda Goswami, M.L., and Kundu, T.: Room temperature ferroelectric and ferromagnetic properties of multiferroics xLa0.7Sr0.3MnO3-(1-x)ErMnO3 (weight percent x=0.1, 0.2) composites. Appl. Phys. Lett. 90, 162510 (2007).
3. Nan, C.W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082 (1994).
4. Spaldin, N.A. and Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005).
5. Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).
6. Hur, N., Park, S., Sharma, P., Ahn, J., Guha, S., and Cheong, S.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004).
7. Lin, L., Wan, Y., and Li, F.: An analytical nonlinear model for laminate multiferroic composites reproducing the DC magnetic bias dependent magnetoelectric properties. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1568 (2012).
8. Li, L., Li, J., Shu, Y., and Yen, J.: The magnetoelectric domains and cross-field switching in multiferroic BiFeO3 . Appl. Phys. Lett. 93, 192506 (2008).
9. Ma, J., Hu, J., Li, Z., and Nan, C.W.: Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 23, 1062 (2011).
10. Fetisov, Y. and Srinivasan, G.: Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl. Phys. Lett. 88, 143503 (2006).
11. Ramesh, R. and Spaldin, N.A.: Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21 (2007).
12. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).
13. Zhou, J.P., Lv, L., Liu, Q., Zhang, Y.X., and Liu, P.: Hydrothermal synthesis and properties of NiFe2O4@BaTiO3 composites with well-matched interface. Sci. Technol. Adv. Mater. 13, 045001 (2012).
14. Wan, J.G., Liu, J.M., Wang, G.H., and Nan, C.W.: Magnetoelectric CoFe2O4-lead zirconate titanate thick films prepared by a polyvinylpyrrolidone-assisted sol-gel method. Appl. Phys. Lett. 88, 182502 (2006).
15. Hattrick-Simpers, J.R., Dai, L., Wuttig, M., Takeuchi, I., and Quandt, E.: Demonstration of magnetoelectric scanning probe microscopy. Rev. Sci. Instrum. 78, 106103 (2007).
16. Zhang, C.L., Chen, W.Q., Xie, S.H., Yang, J.S., and Li, J.Y.: The magnetoelectric effects in multiferroic composite nanofibers. Appl. Phys. Lett. 94, 102907 (2009).
17. Xie, S.H., Ma, F.Y., Liu, Y.M., and Li, J.Y.: Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale 3, 3152 (2011).
18. Zeches, R.J., Rossell, M.D., Zhang, J.X., Hatt, A.J., He, Q., Yang, C.H., Kumar, A., Wang, C. H., Melville, A., Adamo, C., Sheng, G., Chu, Y.H., Ihlefeld, J.F., Erni, R., Ederer, C., Gopalan, V., Chen, L.Q., Schlom, D.G., Spaldin, N.A., Martin, L.W., and Ramesh, R.: A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977 (2009).
19. Lu, Y., Yin, Y., Li, Z.Y., and Xia, Y.: Synthesis and self-assembly of 2 core shell colloids. Nano Lett. 2, 785 (2002).
20. Liu, M., Li, X., Imrane, H., Chen, Y., Goodrich, T., Cai, Z., Ziemer, K.S., Huang, J.Y., and Sun, N.X.: Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zi0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett. 90, 152501 (2007).
21. Sun, X.M., Liu, J., and Li, Y.: Oxides@C core-shell nanostructures: One-pot synthesis, rational conversion, and Li storage property. Chem. Mater. 18, 3486 (2006).
22. Lauhon, L.J., Gudiksen, M.S., Wang, D., and Lieber, C.M.: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57 (2002).
23. Huang, Z.M., Zhang, Y.Z., Kotaki, M., and Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223 (2003).
24. Sun, Z., Zussman, E., Yarin, A.L., Wendorff, J.H., and Greiner, A.: Compound core–shell polymer nanofibers by co-electrospinning. Adv. Mater. 15, 1929 (2003).
25. Zhang, Y.Z., Huang, Z.M., Xu, X.J., Lim, C.T., and Ramakrishna, S.: Preparation of core-shell structured PCL-r-gelatin Bi-component nanofibers by coaxial electrospinning. Chem. Mater. 16, 3406 (2004).
26. Park, J.Y., Choi, S.W., Lee, J.W., Lee, C., and Kim, S.S.: Synthesis and gas sensing properties of TiO2–ZnO core-shell nanofibers. J. Am. Ceram. Soc. 92, 2551 (2009).
27. Xie, S.H., Liu, Y.Y., and Li, J.Y.: Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers. Front. Phys. 4, 399 (2012).
28. Xie, Y., Ou, Y., Ma, F.Y., Tan, X.L., and Xie, S.H.: Synthesis of multiferroic Pb(Zr0.52Ti0.48)O3-CoFe2O4 core-shell nanofibers by coaxial electrospinning. Nanosci. Nanotechnol. Lett. 5, 546 (2013).
29. Hsieh, Y.H., Liou, J.M., Huang, B.C., Liang, C.W., He, Q., Zhan, Q., Chiu, Y.P., Chen, Y.C., and Chu, Y.H.: Local conduction at the BiFeO3-CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4564 (2012).
30. Liu, X.L., Li, M.Y., Wang, J., Hu, Z.Q., Zhu, Y.D., and Zhao, X.Z.: Preparation and characterization of multiferroic CoFe2O4/Bi0.97Ce0.03FeO3 coaxial nanotubes. Appl. Phys. A 108, 829 (2012).
31. Xie, S.H., Li, J.Y., Proksch, R., Liu, Y.M., Zhou, Y.C., Liu, Y.Y., Ou, Y., Lan, L.N., and Qiao, Y.: Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning. Appl. Phys. Lett. 93, 222904 (2008).
32. Ju, Y.W., Park, J.H., Jung, H.R., Cho, S.J., and Lee, W.J.: Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning. Mater. Sci. Eng., B 147, 7 (2008).
33. Rodriguez, B.J., Callahan, C., Kalinin, S.V., and Proksch, R.: Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).
34. Xie, S.H., Gannepalli, A., Chen, Q.N., Liu, Y.M., Zhou, Y.C., Proksch, R., and Li, J.Y.: High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity. Nanoscale 4, 408 (2012).
35. Li, F.X. and Rajapakse, R.K.N.D.: A constrained domain-switching model for polycrystalline ferroelectric ceramics. Part II: Combined switching and application to rhombohedral materials. Acta Mater. 55, 6481 (2007).
36. Jesse, S., Baddorf, A.P., and Kalinin, S.V.: Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).
37. Lian, L. and Sottos, N.R.: Stress effects in sol-gel derived ferroelectric thin films. J. Appl. Phys. 95, 629 (2004).
38. Zhang, J.X., Dai, J.Y., Chow, C.K., Sun, C.L., Lo, V.C., and Chan, H.L.W.: Magnetoelectric coupling in CoFe2O4/SrRuO3/Pb(Zr0.52Ti0.48)O3 heteroepitaxial thin film structure. Appl. Phys. Lett. 92, 022901 (2008).
39. Yan, L., Xing, Z., Wang, Z., Wang, T., Lei, G., Li, J., and Viehland, D.: Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3-CoFe2O4 nanocomposite thin films. Appl. Phys. Lett. 94, 192902 (2009).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed