Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T11:43:17.344Z Has data issue: false hasContentIssue false

Morphology, mechanical, and thermal properties of aramid/layered silicate nanocomposite materials

Published online by Cambridge University Press:  31 January 2011

Sonia Zulfiqar
Affiliation:
Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan
Muhammad Ilyas Sarwar*
Affiliation:
Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan
Ingo Lieberwirth
Affiliation:
Max Planck Institute for Polymer Research, 55128 Mainz, Germany
Zahoor Ahmad
Affiliation:
Department of Chemistry, Faculty of Science, Kuwait University, Safat-13060, Kuwait
*
a)Address all correspondence to this author. e-mail: ilyassarwar@hotmail.com
Get access

Abstract

Aramid-based nanocomposites were prepared by solution intercalation techniques using p-aminobenzoic acid-modified montmorillonite. Polyamide was synthesized by reacting 4,4′-oxydianiline with isophthaloyl chloride in dimethyl acetamide. To create chemical interactions between the two phases for better dispersion of organoclay, aramid chains were selectively amine end-capped. The influence of organically modified clay on the morphology was investigated by x-ray diffraction (XRD), polarized optical microscopy (POM), and transmission electron microscopy (TEM). Mechanical, thermal, and water uptake measurements were carried out to further verify other physical properties of the nanocomposites. Tensile strength, modulus, elongation at break, and toughness were improved relative to pure polymer with the addition of 6 wt% organoclay. Thermal-decomposition temperatures of the nanocomposites were in the range 300–450 °C. Water uptake of neat aramid film was rather high (5.7%) and decreased with augmenting organoclay. DSC exhibited increase in the glass transition temperature (118 °C) up to addition of 16 wt% of organoclay.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Okada, A., Kawasumi, M., Usuki, A., Kojimi, Y., Kurauchi, T.Kamigato, O. Synthesis and properties of nylon-6/clayhybrids in Polymer Based Molecular Composites,, edited by D.W. Schaefer and J.E. Mark (Mater. Res. Soc. Symp. Proc. 171, Pittsburgh, PA, 1990), p. 45CrossRefGoogle Scholar
2Okada, A.Usuki, A.: Twenty years of polymer–clay nanocomposites. Macromol. Mater. Eng. 291, 1449 2006CrossRefGoogle Scholar
3Utracki, L.A., Sepehr, M.Boccaleri, E.: Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). Polym. Adv. Technol. 18, 1 2007CrossRefGoogle Scholar
4Vaia, R.A.Maguire, J.F.: Polymer nanocomposites with prescribed morphology: Going beyond nanoparticle-filled polymers. Chem. Mater. 19, 2736 2007CrossRefGoogle Scholar
5Giannelis, E.P.: Polymer layered silicate nanocomposites. Adv. Mater. 8, 29 1996CrossRefGoogle Scholar
6Zilg, C., Mulhaupt, R.Finter, J.: Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromol. Chem. Phys. 200, 661 19993.0.CO;2-4>CrossRefGoogle Scholar
7Ke, Y., Lu, J., Yi, X., Zhao, J.Qi, Z.: The effects of promoter and curing process on exfoliation behavior of epoxy/clay nanocomposites. J. Appl. Polym. Sci. 78, 808 20003.0.CO;2-9>CrossRefGoogle Scholar
8Kornmann, X., Lindberg, H.Berglund, L.A.: Synthesis of epoxy–clay nanocomposites. Influence of the nature of the curing agent on structure. Polym. 42, 4493 2001CrossRefGoogle Scholar
9Park, J.H.Jana, C.H.: Mechanism of exfoliation of nanoclay particles in epoxy–clay nanocomposites. Macromolecules 36, 2758 2003CrossRefGoogle Scholar
10Lee, D.C.Jang, L.W.: Preparation and characterization of PMMA–clay composite by emulsion polymerization. J. Appl. Polym. Sci. 61, 1117 19963.0.CO;2-P>CrossRefGoogle Scholar
11Vaia, R.A., Jandt, K.S., Kramer, E.J.Gianellis, E.P.: Kinetics of polymer melt intercalation. Macromolecules 28, 8080 1995CrossRefGoogle Scholar
12Gilman, J.W., Jackson, C.L., Morgan, A.B. Jr., Harris, R., Manias, E., Giannelis, E.P., Wuthenow, M., Hilton, D.Philips, S.H.: Flammability properties of polymer-layered silicate nanocomposites. Propylene and polystyrene nanocomposites. Chem. Mater. 12, 1866 2000CrossRefGoogle Scholar
13Fu, X.Qutubuddin, S.: Polymer–clay nanocomposites: Exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polym. 42, 807 2001CrossRefGoogle Scholar
14Park, C.I., Park, O.O., Lim, J.G.Kim, H.J.: The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polym. 42, 7465 2001CrossRefGoogle Scholar
15Sikka, M., Cerini, L.N., Ghosh, S.S.Winey, K.I.: Melt intercalation of polystyrene in layered silicates. J. Polym. Sci., Part B: Polym. Phys. 34, 1443 19963.0.CO;2-T>CrossRefGoogle Scholar
16Kato, M., Usuki, A.Okada, A.: Synthesis of polypropylene oligomer–clay intercalation compounds. J. Appl. Polym. Sci. 66, 1781 19973.0.CO;2-Y>CrossRefGoogle Scholar
17Manias, E., Touny, A., Wu, L., Lu, B., Strawhecker, K., Gilman, J.W.Chung, T.C.: Polypropylene/silicate nanocomposites, synthetic routes and materials properties. Polym. Mater. Sci. Eng. 82, 282 2000Google Scholar
18Ke, Y., Long, C.Qi, Z.: Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites. J. Appl. Polym. Sci. 71, 1139 19993.0.CO;2-E>CrossRefGoogle Scholar
19Basim, A-J., Kamal, A-M.Ranya, S.: Study on bentonite– unsaturated polyester composite materials. J. Reinf. Plast. Compos. 21, 1597 2002Google Scholar
20Lepoittevin, B., Pantoustier, N., Alexandre, M., Calberg, C., Jerome, R.Dubois, P.: Polyester layered silicate nanohybrids by controlled grafting polymerization. J. Mater. Chem. 12, 3528 2002CrossRefGoogle Scholar
21Huang, J.C., Zhu, Z.K., Yin, J., Qian, X.F.Sun, Y.Y.: Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation: Morphology, solvent resistance properties and thermal properties. Polymer 42, 873 2001CrossRefGoogle Scholar
22Chen, Z., Huang, C., Liu, S., Zhang, Y.Gong, K.: Characterization and properties of clay–polyacrylate hybrid materials. J. Appl. Polym. Sci. 75, 796 20003.0.CO;2-#>CrossRefGoogle Scholar
23Hoffmann, B., Kressler, J., Stoeppelmann, G., Friedrich, C.Kim, G-M.: Rheology of nanocomposites based on layered silicates and polyamide-12. Colloid Polym. Sci. 278, 629 2000CrossRefGoogle Scholar
24Lim, Y.T.Park, O.O.: Phase morphology and rheological behavior of polymer/layered silicate nanocomposites. Rheol. Acta 40, 220 2001CrossRefGoogle Scholar
25Bibi, N., Sarwar, M.I., Ishaq, M.Ahmad, Z.: Mechanical and thermal properties of nanocomposites of poly(vinyl chloride) and co-poly(vinyl chloride–vinyl alcohol–vinyl acetate) with montmorillonite. Polym. Polym. Compos. 15, 313 2007Google Scholar
26Hu, Y., Song, L., Xu, J., Yang, L., Chem, Z.Fan, W.: Synthesis of polyurethane/clay intercalated nanocomposites. Colloid Polym. Sci. 279, 819 2001CrossRefGoogle Scholar
27Lu, J.Zhao, X.: Electrorheological properties of a polyaniline– montmorillonite clay nanocomposite suspension. J. Mater. Chem. 12, 2603 2002CrossRefGoogle Scholar
28Agag, T., Koga, T.Takeichi, T.: Studies on thermal and mechanical properties of polyimide–clay nanocomposites. Polymer 42, 3399 2001CrossRefGoogle Scholar
29Tyan, H.L., Liu, Y.C.Wei, K.H.: Thermally and mechanically enhanced clay/polyimide nanocomposites via reactive organoclay. Chem. Mater. 11, 1942 1999CrossRefGoogle Scholar
30Manias, E., Zax, D.B.Anastasiadis, S.H.: Polymer/silicate intercalated nanocomposites: Confinement induced segmental dynamics in 2 nm slits. Polym. Mater. Sci. Eng. 82, 259 2000Google Scholar
31Vaia, R.A.Giannelis, E.P.: Liquid crystal polymer nanocomposites: Direct intercalation of thermotropic liquid-crystalline polymers into layered silicates. Polymer 42, 1281 2001CrossRefGoogle Scholar
32Gloagen, J.M.Lefebvre, J.M.: Plastic deformation behavior of thermoplastic/clay nanocomposites. Polymer 42, 5841 2001CrossRefGoogle Scholar
33Zulfiqar, S., Ahmad, Z., Ishaq, M., Saeed, S.Sarwar, M.I.: Thermal and mechanical properties of SEBS-g-MA based inorganic composite materials. J. Mater. Sci. 42, 93 2007CrossRefGoogle Scholar
34Kausar, A., Zulfiqar, S., Shabbir, S., Ishaq, M.Sarwar, M.I.: Mechanical properties of functionalized SEBS based inorganic hybrid materials. Polym. Bull. 59, 457 2007CrossRefGoogle Scholar
35Liu, X., Wu, Q., Zhang, Q., Berglund, L.A.Mo, Z.: High-temperature x-ray diffraction studies on polyamide 6/clay nanocomposites upon annealing. Polym. Bull. 48, 381 2002CrossRefGoogle Scholar
36Hasegawa, N., Okamoto, H., Kato, M., Usaki, A.Sato, N.: Nylon 6–montmorillonite nanocomposites prepared by compounding nylon 6 with Na-montmorillonite slurry. Polymer 44, 2933 2003CrossRefGoogle Scholar
37Ayyer, R.K.Leonov, A.I.: Comparative rheological studies of polyamide-6 and its low loaded nanocomposite based on layered silicates. Rheol. Acta 43, 283 2004CrossRefGoogle Scholar
38Daniel, I.M., Miyagaw, H., Gdoutos, E.E.Luo, J.J.: Processing and characterization of epoxy/clay nanocomposites. Exp. Mech. 43, 348 2003CrossRefGoogle Scholar
39Haque, A., Shamsuzzoha, M., Hussain, F.Dean, D.: S2-glass/epoxy polymer nanocomposites: Manufacturing, structures, thermal and mechanical properties. J. Compos. Mater. 37, 1821 2003CrossRefGoogle Scholar
40Zhang, W., Zeng, J., Liu, L.Fang, Y.: A novel property of styrene–butadiene–styrene/clay nanocomposites: Radiation resistance. J. Mater. Chem. 14, 209 2004CrossRefGoogle Scholar
41Zulfiqar, S., Ahmad, Z.Sarwar, M.I.: Soluble aromatic polyamide bearing ether linkages: Synthesis and characterization. Colloid Polym. Sci. 285, 1749 2007CrossRefGoogle Scholar
42Zulfiqar, S., Lieberwirth, I.Sarwar, M.I.: Soluble aramid containing ether linkages: Synthesis, static and dynamic light scattering studies. Chem. Phys. 344, 202 2008CrossRefGoogle Scholar
43Morgan, A.B.Gilman, J.W.: Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and x-ray diffraction: A comparative study. J. Appl. Polym. Sci. 87, 1329 2003CrossRefGoogle Scholar