Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T08:26:22.464Z Has data issue: false hasContentIssue false

Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals

Published online by Cambridge University Press:  14 February 2017

Fang Li
Affiliation:
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
Tiehu Han
Affiliation:
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
Huigang Wang*
Affiliation:
Department of Chemistry and the Engineering Research Center for Eco-dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
Xuming Zheng
Affiliation:
Department of Chemistry and the Engineering Research Center for Eco-dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
Junmin Wan
Affiliation:
Engineering Research Center for Eco-dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
Bukuo Ni
Affiliation:
Department of Chemistry, Texas A&M University–Commerce, Commerce, Texas 75429, USA
*
a) Address all correspondence to this author. e-mail: zdwhg@163.com, huigwang@uni-osnabrueck.de
Get access

Abstract

One conceptually different approach has been developed to synthesize Ti3+ self-doped TiO2−x mesocrystals to narrow the band gap of TiO2. This simple and economical one-pot solvothermal method uses TiCl3 and tetrabutyltitanate (TBT) as a precursor and exhibits practical application. Different morphology including uniform spindle shape, tetragonal bipyramid, and capsule-like mesocrystals can be tailored easily by tuning the precursor ratio of TiCl3 to TBT. We have shown that our band gap engineered TiO2−x exhibits unique mesocrystal phase and owns substantial high visible light driven photocatalytic activities. Electron paramagnetic resonance (EPR) studies of this sample verified the presence of oxygen centered radicals, namely, hydroxyl (·OH) and superoxide radicals (O2 −·/·OOH). The catalysts have been characterized using transmission electron microscope, fluorescence spectra, Raman spectra, EPR, X-ray photoelectron spectroscopy, X-ray diffraction (XRD), Ultraviolet–visible absorption spectra, etc. It shows high catalytic stability. The findings of this work provide new insights for developing morphology tailored for visible light driven devices and other applications via controlled band gap engineering.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

Contributing Editor: Xiaobo Chen

References

REFERENCES

Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972).Google Scholar
Hoffmann, M.R., Martin, S.T., Choi, W.Y., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).Google Scholar
Kumar, S.G. and Devi, L.G.: Review on modified TiO2 photocatalysis under UV/visible Light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211 (2011).Google Scholar
Li, X., Yu, J., and Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).Google Scholar
Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., and Chen, X.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).CrossRefGoogle Scholar
Samsudin, E.M., Hamid, S.B.A., Juan, J.C., Basirun, W.J., and Kandjani, A.E.: Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Appl. Surf. Sci. 359, 883 (2015).CrossRefGoogle Scholar
Ong, W.J., Tan, L.L., Chai, S.P., Yong, S.T., and Mohamed, A.R.: Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterization. Nanoscale 6, 1946 (2014).CrossRefGoogle ScholarPubMed
Seo, J., Noh, J.H., and Seok, S.I.: Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 49, 562 (2016).Google Scholar
Inturi, S.N.R., Boningari, T., Suidan, M., and Smirniotis, P.G.: Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2 . Appl. Catal., B 144, 333 (2014).CrossRefGoogle Scholar
Choi, W.Y., Termin, A., and Hoffmann, M.R.: The role of metal-ion dopants in quantum-sized TiO2-correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994).Google Scholar
Khalajabadi, S.Z., Kadir, M.R.A., Izman, S., and Yusop, M.Z.M.: Facile fabrication of hydrophobic surfaces on mechanically alloyed-Mg/HA/TiO2/MgO bionanocomposites. Appl. Surf. Sci. 324, 380 (2015).Google Scholar
Li, X., Xia, T., Xu, C., Murowchick, J., and Chen, X.: Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts. Catal. Today 225, 64 (2014).Google Scholar
Giannakas, A.E., Antonopoulou, M., Daikopoulos, C., Deligiannakis, Y., and Konstantinou, I.: Characterization and catalytic performance of B-doped, B-N co-doped and B-N-F tri-doped TiO2 towards simultaneous Cr(VI) reduction and benzoic acid oxidation. Appl. Catal., B 184, 44 (2016).Google Scholar
Jaiswal, R., Patel, N., Dashora, A., Fernandes, R., Yadav, M., Edla, R., Varma, R.S., Kothari, D.C., Ahuja, B.L., and Miotello, A.: Efficient Co-B-codoped TiO2 photocatalyst for degradation of organic water pollutant under visible light. Appl. Catal., B 183, 242 (2016).Google Scholar
Park, J.H., Kim, S., and Bard, A.J.: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 (2006).CrossRefGoogle ScholarPubMed
Banerjee, S., Dionysiou, D.D., and Pillai, S.C.: Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal., B 176, 396 (2015).Google Scholar
Ivanov, S., Barylyak, A., Besaha, K., Bund, A., Bobitski, Y., Wojnarowska-Nowak, R., Yaremchuk, I., and Kus-Liskiewicz, M.: Synthesis, characterization, and photocatalytic properties of sulfur- and carbon-codoped TiO2 nanoparticles. Nanoscale Res. Lett. 11, 140 (2016).Google Scholar
Zhang, P., Fujitsuka, M., and Majima, T.: TiO2 mesocrystal with nitrogen and fluorine codoping during topochemical transformation: Efficient visible light induced photocatalyst with the codopants. Appl. Catal., B 185, 181 (2016).Google Scholar
Zhang, Y., Creatore, M., Ma, Q-B., El Boukili, A., Gao, L., Verheijen, M.A., Verhoeven, M.W.G.M., and Hensen, E.J.M.: Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-assisted atomic layer deposition. Appl. Surf. Sci. 330, 476 (2015).CrossRefGoogle Scholar
Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L.G., Li, D., Tan, H.Q., Zhao, Z., Xie, Z.G., and Sun, Z.C.: Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5, 12272 (2013).CrossRefGoogle Scholar
Yu, J.C., Yu, J.G., Ho, W.K., Jiang, Z.T., and Zhang, L.Z.: Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808 (2002).Google Scholar
Elbanna, O., Zhang, P., Fujitsuka, M., and Majima, T.: Facile preparation of nitrogen and fluorine codoped TiO2 mesocrystal with visible light photocatalytic activity. Appl. Catal., B 192, 80 (2016).Google Scholar
Samsudin, E.M., Abd Hamid, S.B., Juan, J.C., Basirun, W.J., and Centi, G.: Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts. Appl. Surf. Sci. 370, 380 (2016).CrossRefGoogle Scholar
Chen, X.B., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).Google Scholar
Li, K., Gao, S.M., Wang, Q.Y., Xu, H., Wang, Z.Y., Huang, B.B., Dai, Y., and Lu, J.: In situ reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Interfaces 7, 9023 (2015).Google Scholar
Wang, Z.Q., Wen, B., Hao, Q.Q., Liu, L.M., Zhou, C.Y., Mao, X.C., Lang, X.F., Yin, W.J., Dai, D.X., Selloni, A., and Yang, X.M.: Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2 . J. Am. Chem. Soc. 137, 9146 (2015).Google Scholar
Chen, Y., Li, W.Z., Wang, J.Y., Gan, Y.L., Liu, L., and Ju, M.T.: Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal., B 191, 94 (2016).Google Scholar
Chen, X., Liu, L., and Huang, F.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).Google Scholar
Liu, L. and Chen, X.: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).Google Scholar
Lu, D., Zhang, G., and Wan, Z.: Visible-light-driven g-C3N4/Ti3+–TiO2 photocatalyst co-exposed {001} and {101} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction. Appl. Surf. Sci. 358, 223 (2015).Google Scholar
Tian, J., Hu, X., Yang, H., Zhou, Y., Cui, H., and Liu, H.: High yield production of reduced TiO2 with enhanced photocatalytic activity. Appl. Surf. Sci. 360, 738 (2016).Google Scholar
Wang, J., Yang, P., and Huang, B.: Self-doped TiO2−x nanowires with enhanced photocatalytic activity: Facile synthesis and effects of the Ti3+ . Appl. Surf. Sci. 356, 391 (2015).Google Scholar
Liu, X., Xu, H., Grabstanowicz, L.R., Gao, S.M., Lou, Z.Z., Wang, W.J., Huang, B.B., Dai, Y., and Xu, T.: Ti3+ self-doped TiO2−x anatase nanoparticles via oxidation of TiH2 in H2O2 . Catal. Today 225, 80 (2014).Google Scholar
Ali, A., Ruzybayev, I., Yassitepe, E., Karim, A., Shah, S.I., and Bhatti, A.S.: Phase transformations in the pulsed laser deposition grown TiO2 thin films as a consequence of O-2 partial pressure and Nd doping. J. Phys. Chem. C 119, 11578 (2015).Google Scholar
Chen, X., Zhao, D.X., Liu, K.W., Wang, C.R., Liu, L., Li, B.H., Zhang, Z.Z., and Shen, D.Z.: Laser-modified black titanium oxide nanospheres and their photocatalytic activities under visible light. ACS Appl. Mater. Interfaces 7, 16070 (2015).Google Scholar
Wang, L.Q., Baer, D.R., and Engelhard, M.H.: Creation of variable concentrations of defects on TiO2(110) using low-density electron-beams. Surf. Sci. 320, 295 (1994).Google Scholar
Zhou, X.M., Liu, N., and Schmuki, P.: Ar+-ion bombardment of TiO2 nanotubes creates co-catalytic effect for photocatalytic open circuit hydrogen evolution. Electrochem. Commun. 49, 60 (2014).Google Scholar
Di Valentin, C., Pacchioni, G., and Selloni, A.: Reduced and n-type doped TiO2: Nature of Ti3+ species. J. Phys. Chem. C 113, 20543 (2009).Google Scholar
Justicia, I., Ordejon, P., Canto, G., Mozos, J.L., Fraxedas, J., Battiston, G.A., Gerbasi, R., and Figueras, A.: Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater. 14, 1399 (2002).Google Scholar
Colfen, H. and Antonietti, M.: Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem., Int. Ed. 44, 5576 (2005).Google Scholar
Han, T.H., Wang, H.G., and Zheng, X.M.: Gold nanoparticle incorporation into nanoporous anatase TiO2 mesocrystal using a simple deposition-precipitation method for photocatalytic applications. RSC Adv. 6, 7829 (2016).Google Scholar
Chen, F.F., Cao, F.L., Li, H.X., and Bian, Z.F.: Exploring the important role of nanocrystals orientation in TiO2 superstructure on photocatalytic performances. Langmuir 31, 3494 (2015).Google Scholar
Hong, Z.S., Wei, M.D., Lan, T.B., Jiang, L.L., and Cao, G.Z.: Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties. Energy Environ. Sci. 5, 5408 (2012).Google Scholar
Yang, T.S., Yang, M.C., Shiu, C.B., Chang, W.K., and Wong, M.S.: Effect of N-2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation. Appl. Surf. Sci. 252, 3729 (2006).Google Scholar
Carley, A.F., Chalker, P.R., Riviere, J.C., and Roberts, M.W.: The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra. J. Chem. Soc., Faraday Trans. 1 83, 351 (1987).Google Scholar
György, E., Pérez del Pino, A., Serra, P., and Morenza, J.L.: Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen. Surf. Coat. Technol. 173, 265 (2003).Google Scholar
Fontmorin, J.M., Castillo, R.C.B., Tang, W.Z., and Sillanpaa, M.: Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction. Water Res. 99, 24 (2016).CrossRefGoogle Scholar
Li, A.S.W., Cummings, K.B., Rothling, H.P., Buettner, G.R., and Chignell, C.F.: A spin-trapping database implemented on the IBM PC/AT. J. Magn. Reson. 79, 140 (1988).Google Scholar