Skip to main content Accessibility help

Morphology and electrical transport in pentacene films on silylated oxide surfaces

  • Karthik Shankar (a1) and Thomas N. Jackson (a1)


A study comparing the morphology and electrical transport properties of pentacene films on underlayers of different self-assembled monolayers (SAMs) is presented. The SAMs studied as underlayers were phenyltrichlorosilane, n-octadecyltrichlorosilane, and t-butyldiphenylchlorosilane. Pentacene thin films were grown by vacuum sublimation on SiO2 surfaces treated with self-assembled monolayers. During deposition, substrates were held at a temperature of 70 °C. The morphologies of the films at different stages of deposition were studied by atomic force microscopy, and the transport properties of the films were characterized by I-V measurements in a simple field-effect transistor (FET) structure. The SAM underlayers strongly influence the film morphology in the first few molecular layers and hence significantly impact the electrical transport in the resulting FETs.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Klauk, H., Halik, M., Zschieschang, U., Schmid, G. and Radlik, W.: High-mobility polymer gate dielectric pentacene thin film transistors. J. Appl. Phys. 92, 5259 (2002).
2.Kelley, T.W., Muyres, D.V., Baude, P.F., Smith, T.P., and Jones, T.D.: High Performance Organic Thin Film Transistors, in Organic and Polymeric Materials and Devices, edited by Blom, P.W.M., Greenham, N.C., Dimitrakopoulos, C.D., and Frisbie, C.D. (Mater. Res. Soc. Symp. Proc. 771, Warrendale, PA, 2003), p. 169, L6.5.
3.Gundlach, D.J., Kuo, C.C., Nelson, S.F., and Jackson, T.N.: Organic Thin Film Transistors with Field Effect Mobility > 2 cm2/V-s. 57th Device Research Conference Digest, pp. 164–165, (1999).
4.Yoshida, M., Uemura, S., Kodsaza, T., Kamata, T., Matsuzawa, M. and Kawai, T.: Surface Potential Control of an Insulator Layer for the High Performance Organic FET. Synth. Met. 137 967–968 (2003).
5.Gundlach, D.J., Kuo, C.C., Sheraw, C.D., Nichols, J.A. and Jackson, T.N. Improved Organic Thin Film Transistor Performance Using Chemically-Modified Gate Dielectrics. Proceedings of the SPIE, vol. 4466, p. 5464
6.Ruiz, R., Nickel, B., Koch, N., Feldman, L.C., Haglund, R.F., Kahn, A. and Scoles, G.: Pentacene ultrathin film formation on reduced and oxidized Si surfaces. Phys. Rev. B 67, 125406 (2003).
7.Shtein, M., Mapel, J., Bensiger, J.B. and Forrest, S.R.: Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors. Appl. Phys. Lett. 81, 268 (2002).
8.Heringdorf, F-J. Meyer zu, Reuter, M.C. and Tromp, R.M.: Growth dynamics of pentacene thin films. Nature 412, 517 (2001).
9.Kosbar, L.L., Dimitrakopoulos, C.D. and Mascaro, D.J.: The Effect of Surface Preparation on the Structure and Electrical Transport in an Organic Semiconductor, in Electronic, Optical and Optoelectronic Polymers and Oligomers, edited by Jabbour, G.E. and Sariciftci, N.S. (Mater. Res. Soc. Symp. Proc. 665,Warrendale, PA, 2002), p. 401, C10.6.1
10.Salleo, A., Chabinyc, M.L., Yang, M.S. and Street, R.A.: Polymer thin-film transistors with chemically modified dielectric interfaces. App. Phys. Lett. 81, 4383 (2002).
11.Dimitrakopoulos, C.D., Brown, A.R. and Pomp, A.: Molecular Beam Deposited Thin Films of Pentacene for Organic Field Effect Transistor Applications. J. Appl. Phys. 80, 2501 (1996).
12.Bouchoms, I.P.M., Schoonveld, W.A., Vrijmoeth, J. and Klapwijk, T.M.: Morphology identification of the thin film phases of vacuum evaporated pentacene on SiO2 substrates. Synth. Met. 104, 175 (1999).
13.Gundlach, D.J., Lin, Y.Y., Jackson, T.N., Nelson, S.F. and Schlom, D.G.: Pentacene Organic Thin Film Transistors—Molecular Ordering and Mobility. IEEE Elect. Dev. Lett. 18, 87 (1997).
14.Knipp, D., Street, R.A., Völkel, A. and Ho, J.: Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport. J. Appl. Phys. 93, 347 (2003).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed