Skip to main content Accessibility help
×
Home

Monolithic nanocrystalline Au fabricated by the compaction of nanoscale foam

  • A.M. Hodge (a1), J. Biener (a1), L.L. Hsiung (a1), Y.M. Wang (a1), A.V. Hamza (a1) and J.H. Satcher (a1)...

Abstract

We describe a two-step dealloying/compaction process to produce nanocrystalline Au. First, nanocrystalline/nanoporous Au foam was synthesized by electrochemically driven dealloying. The resulting Au foams exhibited porosities of ∼60% with pore sizes of 40 and 100 nm and a typical grain size of <50 nm. Second, the nanoporous foams were fully compacted to produce nanocrystalline monolithic Au. The compacted Au was characterized by transmission electron microscopy and x-ray diffraction and tested by depth-sensing nanoindentation. The compacted nanocrystalline Au exhibited an average grain size of <50 nm and hardness values ranging from 1.4 to 2.0 GPa, which were up to 4.5 times higher than the hardness values obtained from polycrystalline Au.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: hodge4@llnl.gov

References

Hide All
1.Gleiter, H.: Nanostrcuture materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2002).
2.Kumar, K.S., Van Swygenhoven, H. and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).
3.Ebrahimi, F., Zhai, Q. and Kong, D.: Deformation and fracture of electrodeposited copper. Scripta Mater. 39, 315 (1998).
4.Schuh, C.A., Nieh, T.G. and Yamasaki, T.: Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scripta Mater. 46, 735 (2002).
5.Sanders, P.G., Eastman, J.A. and Weertman, J.R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019 (1997).
6.Okuda, S. and Tang, F.: Thermal stability of nanocrystalline gold prepared by gas deposition method. Nanostruct. Mater. 6, 585 (1995).
7.Tanimoto, H., Fujita, H., Mizubayashi, H., Sasaki, Y., Kita, E. and Okuda, S.: AFM observation of nanocrystalline Au prepared by a gas deposition method. Mater. Sci. Eng. 217, 108 (1996).
8.Tanimoto, H., Koda, Y., Sakai, Y., Mizubayashi, H. and Kita, E.: Nanostructure and thermal stability of Au film prepared by sputtering technique. Scripta Mater. 44, 2231 (2001).
9.Sakai, Y., Tanimoto, H. and Mizubayashi, H.: Mechanical behavior of high density nanocrystalline gold prepared by gas deposition. Acta Mater. 47, 211 (1999).
10.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N. and Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).
11.Sieradzki, K., Dimitrov, N., Movrin, D., McCall, C., Vasijevic, N. and Erlebacher, J.: The dealloying critical potential. J. Electrochem. Soc. 149, B370 (2002).
12.Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M. and Satcher, J.H.: Nanoporous Au—A high yield strength material. J. Appl. Phys. 97, 024301 (2005).
13.Ding, Y., Kim, Y-J. and Erlebacher, J.: Nanoporous gold leaf—Ancient technology/advanced material. Adv. Mater. 16, 1897 (2004).
14.Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structures and Properties, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1997).
15.Lee, G.H., Rhee, C.K., Lee, M.K., Kim, W.W. and Ivanov, V.V.: Nanostructures and mechanical properties of coper compacts prepared by magnetic pulsed compaction method. Mater. Sci. Eng. 375–377A, 604 (2004).
16.Nieh, T.G., Luo, P., Nellis, W., Lesuer, D. and Benson, D.: Dynamic compaction of aluminum nanocrystals. Acta Mater. 44, 3781 (1996).
17.Li, R. and Sieradzki, K.: Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168 (1992).
18.Metals Handbook, edited by Davies, J.R. (ASM International, Materials Park, OH, 1998), p. 626.
19.Kiely, J.D. and Houston, J.E.: Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588 (1998).
20.Beake, B.D. and Smith, J.F.: High temperature nanoindentation testing on fused silica and other materials. Philos. Mag. A 82, 2179 (2002).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed