Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T05:41:04.042Z Has data issue: false hasContentIssue false

Molecular weight of polyethylenimine-dependent transfusion and selective antimicrobial activity of functional silver nanoparticles

Published online by Cambridge University Press:  20 July 2020

Atul Kumar Tiwari
Affiliation:
Department of Chemistry, Indian Institute of Technology, Varanasi, Uttar Pradesh221005, India
Munesh Kumar Gupta
Affiliation:
Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221005, India
Govind Pandey
Affiliation:
Department of Pediatrics, King George Medical University, Lucknow, Uttar Pradesh226003, India
Roger J. Narayan*
Affiliation:
Department of Biomedical Engineering, North Carolina State University, North Carolina27695, USA
Prem C. Pandey*
Affiliation:
Department of Chemistry, Indian Institute of Technology, Varanasi, Uttar Pradesh221005, India
*
a)Address all correspondence to this authors. e-mail: rjnaraya@ncsu.edu and pcpandey.apc@iitbhu.ac.in
a)Address all correspondence to this authors. e-mail: rjnaraya@ncsu.edu and pcpandey.apc@iitbhu.ac.in
Get access

Abstract

Synthetic cationic polymer-mediated synthesis of silver nanoparticles and selective antimicrobial activity of the same were demonstrated. Polyethyleneimine (PEI)-coated silver nanoparticles showed antimicrobial activity against Acinetobacter baumannii as a function of the polymeric molecular weight (MW) of PEI. Silver nanoparticles were coated with PEI of three different MWs: Ag-NP-1 with PEI exhibiting a MW of 750,000, Ag-NP-2 with PEI exhibiting a MW of 1300, and Ag-NP-3 with PEI exhibiting a MW of 60,000. These nanoparticles showed a particle size distribution of 4–20 nm. The nanoparticles exhibited potent antimicrobial activity against A. baumannii, with the minimum inhibitory concentration of Ag-NP-1, Ag-NP-2, and Ag-NP-3 on the order of 5, 10, and 5 μg/mL, respectively, and minimum bactericidal concentration of Ag-NP-1, Ag-NP-2, and Ag-NP-3 on the order of 10, 20, and 10 μg/mL, respectively. Fluorescence imaging of Ag-NPs revealed selective transfusion of Ag-NPs across the cell membrane as a function of the polymeric MW; differential interaction of the cytoplasmic proteins during antimicrobial activity was observed.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Radu, D.R., Lai, C.Y., Jeftinija, K., Rowe, E.W., Jeftinija, S., and Lin, V.S.Y.: A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 126, 1321613217 (2004).CrossRefGoogle ScholarPubMed
Bharali, D.J., Klejbor, I., Stachowiak, E.K., Dutta, P., Roy, I., Kaur, N., Bergey, E.J., Prasad, P.N., and Stachowiak, M.K.: Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA 102, 1153911544 (2005).CrossRefGoogle Scholar
Xia, T., Kovochich, M., Liong, M., Meng, H., Kabehie, S., George, S., Zink, J.I., and Nel, A.E.: Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3, 32733286 (2009).CrossRefGoogle ScholarPubMed
Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 10251102 (2005).CrossRefGoogle ScholarPubMed
Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., and Yacaman, M.J.: The bactericidal effect of silver nanoparticles. Nanotechnol ogy 16, 2346 (2005).CrossRefGoogle ScholarPubMed
Radzig, M.A., Nadtochenko, V.A., Koksharova, O.A., Kiwi, J., Lipasova, V.A., and Khmel, I.A.: Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Coll. Surf. B: Biointerfaces 102, 300306 (2013).CrossRefGoogle ScholarPubMed
Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., and Galdiero, M.: Silver nanoparticles as potential antibacterial agents. Molecules 20, 88568874 (2015).CrossRefGoogle ScholarPubMed
Rai, M., Yadav, A., and Gade, A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 7683 (2009).CrossRefGoogle ScholarPubMed
Wiley, B., Sun, Y., Mayers, B., and Xia, Y.: Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 11, 454463 (2005).CrossRefGoogle ScholarPubMed
Raffi, M., Hussain, F., Bhatti, T.M., Akhter, J.I., Hameed, A., and Hasan, M.M.: Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 24, 192196 (2008).Google Scholar
Dakal, T.C., Kumar, A., Majumdar, R.S., and Yadav, V.: Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7, 1831 (2016).CrossRefGoogle ScholarPubMed
Pandey, P.C., Pandey, G., and Narayan, R.J.: Controlled synthesis of polyethylenimine coated gold nanoparticles: Application in glutathione sensing and nucleotide delivery. J. Biomed. Mater. Res. B 105, 11911199 (2017).CrossRefGoogle ScholarPubMed
Matharu, R.K., Ciric, L., Ren, G., and Edirisinghe, M.: Comparative study of the antimicrobial effects of tungsten nanoparticles and tungsten nanocomposite fibres on hospital acquired bacterial and viral pathogens. Nanomaterials 10, 1017 (2020).CrossRefGoogle ScholarPubMed
Matharu, R.K., Porwal, H., Ciric, L., and Edirisinghe, M.: The effect of graphene–poly (methyl methacrylate) fibres on microbial growth. Interf. Focus 8, 20170058 (2018).CrossRefGoogle ScholarPubMed
Shi, T., Wei, Q., Wang, Z., Zhang, G., Sun, X., and He, Q.Y.: Photocatalytic protein damage by silver nanoparticles circumvents bacterial stress response and multidrug resistance. mSphere 4, e00175-19 (2019).CrossRefGoogle ScholarPubMed
Rai, M.K., Deshmukh, S.D., Ingle, A.P., and Gade, A.K.: Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112, 841852 (2012).CrossRefGoogle ScholarPubMed
Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., and Kim, J.O.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662668 (2000).3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Matsumura, Y., Yoshikata, K., Kunisaki, S.I., and Tsuchido, T.: Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69, 42784281 (2003).CrossRefGoogle ScholarPubMed
Huang, B., Wei, Z.B., Yang, L.Y., Pan, K., and Miao, A.J.: Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae. Environ. Sci. Technol. 53, 38713879 (2019).CrossRefGoogle ScholarPubMed
Choi, Y., Kim, H.A., Kim, K.W., and Lee, B.T.: Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J. Environ. Sci. 66, 5060 (2018).CrossRefGoogle ScholarPubMed
Li, P., Li, J., Wu, C., Wu, Q., and Li, J.: Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16, 1912 (2005).CrossRefGoogle Scholar
Andrews, J.M.: Determination of minimum inhibitory concentrations. J. Antimicrob. Chemotherap. 48, 516 (2001).CrossRefGoogle ScholarPubMed
Cavaleri, J., Rankin, D., Harbeck, J., Sautter, L.R., McCarter, S.Y., Sharp, S.E., Ortez, H.J., and Spiegel, A.C.: Manual of Antimicrobial Susceptibility Testing (American Society for Microbiology, Washington, 2005); pp. 4253.Google Scholar
Lau, K.Y., Zainin, N.S., Abas, F., and Rukayadi, Y.: Antibacterial and sporicidal activity of Eugenia polyantha Wight against Bacillus cereus and Bacillus subtilis. Int. J. Curr. Microbiol. Appl. Sci. 3, 499510 (2014).Google Scholar
McFarland, J.: The nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J. Am. Med. Assoc. 49, 11761178 (1907).CrossRefGoogle Scholar