Skip to main content Accessibility help
×
Home

Molecular sieve membranes for N2/CH4 separation

  • Moises A. Carreon (a1)

Abstract

Natural gas consumption has grown from 5.0 trillion cubic feet (TCF) in 1949 to 27.0 TCF in 2014 and is expected to be ∼31.6 TCF in 2040. This large demand requires an effective technology to purify natural gas. Nitrogen is a significant impurity in natural gas and has to be removed since it decreases the natural gas energy content. The benchmark technology to remove nitrogen from natural gas is cryogenic distillation, which is costly and energy intensive. Membrane technology could play a key role in making this separation less energy intensive and therefore economically feasible. Molecular sieve membranes are ideal candidates to remove natural gas impurities because of their exceptional size-exclusion properties, high thermal and chemical resistance. In this review, the state of the art of molecular sieve membranes for N2/CH4 separation, separation mechanisms involved, and future directions of these emerging membranes for natural gas purification are critically discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Molecular sieve membranes for N2/CH4 separation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Molecular sieve membranes for N2/CH4 separation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Molecular sieve membranes for N2/CH4 separation
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a) Address all correspondence to this author. e-mail: mcarreon@mines.edu

Footnotes

Hide All

Contributing Editor: Chongmin Wang

Footnotes

References

Hide All
1. CIA Country Comparison: Natural gas production. Available at: https://www.cia.gov/library/publications/the-world-factbook/rankorder/2249rank.html (accessed May 1, 2005).
2. U.S.E.I.A. U.S. Energy Information Administration: U.S. remained world’s largest producer of petroleum and natural gas hydrocarbons in 2014. Available at: http://www.eia.gov/dnav/ng/hist/n9050us2a.htm (accessed May 1, 2005).
3. IEA: Are We Entering a Golden Age of Gas? World Energy Outlook, International Energy Agency, France, 2011.
4. Sieminski, A.: Annual Energy Outlook 2016; U.S. Energy Information Administration, 2016.
5. Baker, R.W. and Lokhandwala, K.: Natural gas processing with membranes: An overview. Ind. Eng. Chem. Res. 47, 2109 (2008).
6. Overview of Natural Gas, 2015. Available at: http://naturalgas.org/5overview/background/ (accessed May 1, 2005).
7. Rufford, T.E., Smart, S., Watson, G.C.Y., Graham, B.F., Boxall, J., da Costa, J.C.D., and May, E.F.: The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Pet. Sci. Eng. 94–95, 123 (2012).
8. Sep-Pro Systems: Nitrogen Rejection Units, 2015. Available at: http://www.sepprosystems.com/Nitrogen_Rejection_Units.html (accessed May 1, 2005).
9. Carugati, A., Gambarotta, E., and Pollesel, P.: Nitrogen rejection by absorption with field condensate. GTI–Natural Gas Technologies (2005).
10. Koros, W.J. and Mahajan, R.: Pushing the limits on possibilities for large scale gas separation: Which strategies? J. Membr. Sci. 175, 181 (2000).
11. Koros, W.J. and Fleming, G.K.: Membrane-based gas separation. J. Membr. Sci. 83, 1 (1993).
12. Li, S., Zong, Z., Zhou, S.J., Huang, Y., Song, Z., Feng, X., Zhou, R., Meyer, H.S., Yu, M., and Carreon, M.A.: SAPO-34 membranes for N2/CH4 separation: Preparation, characterization, separation performance and economic evaluation. J. Membr. Sci. 487, 141 (2015).
13. Meyer, H.S. and Henson, M.S.: Methane selective membranes for nitrogen removal from low quality natural gas—High permeation is not enough. In Proceedings Natural Gas Technologies II: Ingenuity and Innovation (Phoenix, AZ, 2004).
14. Lokhandwala, K.A., Pinnau, I., He, Z., Amo, K.D., DaCosta, A.R., Wijmans, J.G., and Baker, R.W.: Membrane separation of nitrogen from natural gas: A case study from membrane synthesis to commercial deployment. J. Membr. Sci. 346, 270 (2010).
15. Rungta, M., Xu, L., and Koros, W.J.: Carbon molecular sieve dense film membranes derived from matrimid for ethylene/ethane separation. Carbon 50, 1488 (2012).
16. Fu, S., Sanders, E.S., Kulkarni, S.S., and Koros, W.J.: Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. J. Membr. Sci. 487, 60 (2015).
17. Xu, L., Rungta, M., and Koros, W.J.: Matrimid derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. J. Membr. Sci. 380, 138 (2011).
18. Fu, S., Sanders, E.S., Kulkarni, S.S., Wenz, G.B., and Koros, W.J.: Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides: Entropic selectivity evaluation. Carbon 95, 955 (2015).
19. Ning, X. and Koros, W.J.: Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation. Carbon 66, 511 (2014).
20. Wenz, G.B. and Koros, W.J.: Tuning carbon molecular sieves for natural gas separations: A diamine molecular approach. AIChE J. 73, 751 (2017).
21. Koros, W.J. and Zhang, C.: Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289 (2017).
22. Robeson, L.M.: The upper bound revisited. J. Membr. Sci. 320, 390 (2008).
23. Xu, R., Pang, W., Yu, J., Huo, Q., and Chen, J.: Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure (John Wiley & Sons, Chichester, U.K., 2009).
24. Wu, T., Diaz, M.C., Zheng, Y., Zhou, R., Funke, H.H., Falconer, J.L., and Noble, R.D.: Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes. J. Membr. Sci. 473, 201 (2015).
25. Szostak, R.: Molecular Sieves-principles of Synthesis and Identification (Van Nostrand Reinhold, New York, NY, 1989).
26. Zhang, L., Jia, M., and Enze, M.: Synthesis of SAPO-34/ceramic composite membranes. Stud. Surf. Sci. Catal. 105, 2211 (1997).
27. Poshusta, J.C., Tuan, V.A., Falconer, J.L., and Noble, R.D.: Synthesis and permeation properties of SAPO-34 tubular membranes. Ind. Eng. Chem. Res. 37, 3924 (1998).
28. Poshusta, J.C., Tuan, V.A., Pape, E.A., Noble, R.D., and Falconer, J.L.: Separation of light gas mixtures using SAPO-34 membranes. AIChE J. 46, 779 (2000).
29. Ping, E.W., Zhou, R., Funke, H.H., Falconer, J.L., and Noble, R.D.: Seeded-gel synthesis of SAPO-34 single channel and monolith membranes for CO2/CH4 separations. J. Membr. Sci. 415, 770 (2012).
30. Zhou, R., Ping, E.W., Funke, H.H., Falconer, J.L., and Noble, R.D.: Improving SAPO-34 membrane synthesis. J. Membr. Sci. 444, 384 (2013).
31. Carreon, M.A., Li, S., Falconer, J.L., and Noble, R.D.: SAPO-34 seeds and membranes prepared using multiple templates. Adv. Mater. 20, 729 (2008).
32. Carreon, M.A., Li, S., Falconer, J.L., and Noble, R.D.: Alumina supported SAPO-34 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 130, 5412 (2008).
33. Li, S., Falconer, J.L., and Noble, R.D.: Improved SAPO-34 membranes for CO2/CH4 separations. Adv. Mater. 18, 2601 (2006).
34. Li, S., Falconer, J.L., and Noble, R.D.: SAPO-34 membranes for CO2/CH4 separation. J. Membr. Sci. 241, 121 (2004).
35. Funke, H.H., Chen, M.Z., Prakash, A.N., Falconer, J.L., and Noble, R.D.: Separating molecules by size in SAPO-34 membranes. J. Membr. Sci. 456, 185 (2014).
36. Venna, S.R. and Carreon, M.A.: Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir 27, 2888 (2011).
37. Li, S. and Fan, C.Q.: High-flux SAPO-34 membrane for CO2/N2 separation. Ind. Eng. Chem. Res. 49, 4399 (2010).
38. Feng, X., Zong, Z., Elsaidi, S.K., Jasinski, J.B., Krishna, R., Thallapally, P.K., and Carreon, M.A.: Kr/Xe separation over a chabazite zeolite membrane. J. Am. Chem. Soc. 138, 9791 (2016).
39. Kwon, Y.H., Kiang, C., Benjamin, E., Crawford, P., Nair, S., and Bhave, R.: Krypton–xenon separation properties of SAPO-34 zeolite materials and membranes. AIChE J. 63, 761 (2017).
40. Huang, Y., Wang, L., Song, Z., Li, S., and Yu, M.: Growth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high-aspect-ratio seeds. Angew. Chem., Int. Ed. 54, 10843 (2015).
41. Zong, Z., Feng, X., Huang, Y., Song, Z., Zhou, R., Zhou, S.J., Carreon, M.A., Yu, M., and Li, S.: Highly permeable N2/CH4 separation SAPO-34 membranes synthesized by diluted gels and increased crystallization temperature. Microporous Mesoporous Mater. 224, 36 (2016).
42. Zong, Z. and Carreon, M.A.: Thin SAPO-34 membranes synthesized in stainless steel autoclaves for N2/CH4 separation. J. Membr. Sci. 524, 117 (2017).
43. Lok, B.M., Messina, C.A., Patton, R.L., Gajek, R.T., Cannan, T.R., and Flanigen, E.M.: Aluminophosphate molecular sieves—Another new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 106, 6092 (1984).
44. Carreon, M.L., Li, S., and Carreon, M.A.: AlPO-18 membranes for CO2/CH4 separation. Chem. Commun. 48, 2310 (2012).
45. Wu, T., Wang, B., Lu, Z.H., Zhou, R.F., and Chen, X.S.: Alumina-supported AlPO-18 membranes for CO2/CH4 separation. J. Membr. Sci. 471, 338 (2014).
46. Wang, B., Hu, N., Wang, H.M., Zheng, Y.H., and Zhou, R.F.: Improved AlPO-18 membranes for light gas separation. J. Mater. Chem. A 23, 12205 (2015).
47. Zong, Z., Elsaidi, S.K., Thallapally, P.K., and Carreon, M.A.: Highly permeable AlPO-18 membranes for N2/CH4 separation. Ind. Eng. Chem. Res. 56, 4113 (2017).
48. Wu, T., Feng, X., Elsaidi, S.K., Thallapally, P.K., and Carreon, M.A.: Zeolitic imidazolate Framework-8 (ZIF-8) membranes for Kr/Xe separation. Ind. Eng. Chem. Res. 56, 1682 (2017).
49. Singh, A. and Koros, W.J.: Significance of entropic selectivity for advanced gas separation membranes. Ind. Eng. Chem. Res. 35, 1231 (1996).
50. Poling, B.E., Prausnitz, J.M., and O’Connell, J.P.: The Properties of Gases and Liquids, 5th ed. (McGraw Hill, New York, 2001).
51. Deroche, I., Gaberova, L., Maurin, G., Llewellyn, P., Castro, M., and Wright, P.: Adsorption of carbon dioxide in SAPO STA-7 and AlPO-18: Grand Canonical Monte Carlo simulations and microcalorimetry measurements. Adsorption 14, 207 (2008).
52. Li, S.G., Falconer, J.L., Noble, R.D., and Krishna, R.: Modeling permeation of CO2/CH4, CO2/N2, and N2/CH4 mixtures across SAPO-34 membrane with the Maxwell-Stefan equations. Ind. Eng. Chem. Res. 46, 3904 (2007).
53. Lohse, U., Löffler, E., Kosche, K., Jänchen, J., and Parlitz, B.: Isomorphous substitution of silicon in the erionite-like structure AlPO-17 and acidity of SAPO-17. Zeolites 13, 549 (1993).
54. Zhong, S., Bu, N., Zhou, R., Jin, W., Yu, M., and Li, S.: Aluminophosphate-17 and silicoaluminophosphate-17 membranes for CO2 separations. J. Membr. Sci. 520, 507 (2016).
55. Su, X., Tian, P., Li, J.Z., Zhang, Y., Meng, S.H., He, Y.L., Fan, D., and Liu, Z.M.: Synthesis and characterization of DNL-6, a new silicoaluminophosphate molecular sieve with the RHO framework. Microporous Mesoporous Mater. 144, 113 (2011).
56. Su, X., Tian, P., Fan, D., Xia, Q.H., Yang, Y., Xu, S.T., Zhang, L., Zhang, Y., Wang, D.H., and Liu, Z.M.: Synthesis of DNL-6 with a high concentration of Si(4Al) environments and its application in CO2 separation. Chemsuschem 6, 911 (2013).
57. Hong, M., Li, S., Funke, H.H., Falconer, J.L., and Noble, R.D.: Ion-exchanged SAPO-34 membranes for light gas separations. Microporous Mesoporous Mater. 106, 140 (2007).
58. Chew, T.L., Ahmad, A.L., and Bhatia, S.: Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation. Chem. Eng. J. 171, 1053 (2011).
59. Pham, T.D., Liu, Q.L., and Lobo, R.F.: Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites. Langmuir 29, 832 (2013).
60. Li, S., Carreon, M.A., Zhang, Y., Funke, H.H., Noble, R.D., and Falconer, J.L.: Scale-up of SAPO-34 membranes for CO2/CH4 separation. J. Membr. Sci. 352, 7 (2010).
61. Sholl, D.S. and Lively, R.P.: Seven chemical separations to change the world. Nat. Mater. 532, 435 (2016).

Keywords

Molecular sieve membranes for N2/CH4 separation

  • Moises A. Carreon (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed