Skip to main content Accessibility help

Molecular dynamics simulations of surface oxidation and of surface slip irreversibility under fatigue in oxygen environment

  • Zhengxuan Fan (a1), Olivier Hardouin Duparc (a2), Maxime Sauzay (a3), Boubakar Diawara (a4) and Adri C.T. van Duin (a5)...


Atomistic simulations are carried out to analyze the influence of oxygen environment on nickel and copper surface roughness and notch initiation. The early stages of oxidation of nickel and copper surfaces are first simulated and compared with experimental observations. Various oxygen superstructures observed on metal surfaces are reproduced as well as the nucleation of small NiO embryos. Nickel and copper surface oxidation mechanisms are different and different “oxide” nano layers are formed. None of these superficial nano layers has a major influence on the mechanical behavior of surface slips as they do not change the surface roughness fatigue evolution and micro-notch production. These atomistic results agree with experimental studies which report similar development of persistent slip band surface relief in inert and in air environment. A general model for the estimation of surface slip irreversibility is also provided and the models of environment-assisted surface relief evolution and microcrack initiation are revisited.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Gunther Eggeler



Hide All
1. Woods, P.J.: Low-amplitude fatigue of copper and copper–5 at.% aluminium single crystals. Philos. Mag. 28, 155 (1973).
2. Differt, K., Esmann, U., and Mughrabi, H.: A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip. Philos. Mag. A 54, 237 (1986).
3. Lépinoux, J. and Kubin, L.P.: Dislocation mechanisms and steady states in the cyclic deformation of face centred cubic crystals. Philos. Mag. A 54, 631 (1986).
4. Weidner, A., Sauzay, M., and Skrotzki, W.: Experimental evaluation of the cyclic slip irreversibility factor. Key Eng. Mater. 465, 223 (2011).
5. Fan, Z., Hardouin Duparc, O., and Sauzay, M.: Molecular dynamics simulation of surface step reconstruction and irreversibility under cyclic loading. Acta Mater. 102, 149 (2016).
6. Suresh, S.: Fatigue of Metals, 2nd ed. (Cambridge University Press, Cambridge, U.K., 2001).
7. Thompson, N., Wadsworth, N., and Louat, N.: The origin of fatigue fracture in copper. Philos. Mag. 1, 113 (1956).
8. Kwon, I.B., Fine, M.E., and Weertman, J.: Fatigue damage in copper single crystals at room and cryogenic temperatures. Acta Metall. 37, 2937 (1989).
9. Kwon, I.B., Fine, M.E., and Weertman, J.: Microstructural studies on the initiation and growth of small fatigue crack at 298, 77, and 4.2 K in polycrystalline copper. Acta Metall. 37, 2927 (1989).
10. Venkataraman, G., Sriram, T.S., Fine, M.E., and Chung, Y.W.: STM and surface analytical study of the effect of environment on fatigue crack initiation in silver single crystals I: Surface chemical effects. Scr. Metall. Mater. 24, 273 (1990).
11. Sriram, T.S., Fine, M.E., and Chung, Y.W.: STM and surface analytical study of the effect of environment on fatigue crack initiation in silver single crystals II: Effects of oxygen partial pressure. Scr. Metall. Mater. 24, 279 (1990).
12. Sriram, T.S., Fine, M.E., and Chung, Y.W.: The application of surface science to fatigue: The role of surface chemistry and surface modification in fatigue crack initiation in silver single crystals. Acta Metall. 40, 2769 (1992).
13. Fujita, F.E.: Oxidation and dislocation mechanisms in fatigue-crack formation. Fracture of solids, Drucker, D.C. and Gilman, J.J., eds. (Interscience Publishers, New York, New York, 1963), pp. 657670.
14. Bauer, C.E., Speiser, R., and Hirth, J-P.: Surface energy as a function of oxygen activity. Metall. Mater. Trans. 7, 75 (1976).
15. Tanaka, K. and Mura, T.: A dislocation model for fatigue crack initiation. J. Appl. Mech. 48, 97 (1981).
16. Sauzay, M. and Liu, J.: Simulation of surface crack initiation induced by slip localization and point defect kinetics. Adv. Mater. Res. 891–892, 542 (2014).
17. Shen, H., Podlaseck, S.E., and Kramer, I.R.: Effect of vacuum on the fatigue life of aluminum. Acta Metall. 14, 341 (1966).
18. Laird, C. and Smith, G.C.: Initial stages of damage in high stress fatigue in some pure metals. Philos. Mag. 8, 19451963 (1963).
19. Martin, D.E.: Plastic strain fatigue in air and vacuum. J. Basic Eng. 87, 850 (1965).
20. Greenfield, I.G.: The effect of diffused surface layers and oxygen atmosphere on the development of fatigue striations and cracks in copper single crystals. Acta Metall. 19, 857 (1971).
21. Finney, J.M. and Laird, C.: Strain localization in cyclic deformation of copper single crystals. Philos. Mag. 31, 339 (1975).
22. Wang, R., Mughrabi, H., McGovern, S., and Rapp, M.: Fatigue of copper single crystals in vacuum and in air I: Persistent slip bands and dislocation microstructures. Mater. Sci. Eng. 65, 219 (1984).
23. Basinski, Z.S. and Basinski, S.J.: Copper single crystal PSB morphology between 4.2 and 350 K. Acta Metall. 37, 3263 (1989).
24. Witmer, D.E., Farrington, G.C., and Laird, C.: Changes in strain localization behavior induced by fatigue in inert environments. Acta Metall. 35, 1895 (1987).
25. Grinberg, N.M.: The effect of vacuum on fatigue crack growth. Int. J. Fatigue 4, 83 (1982).
26. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).
27. Plimpton, S., Thompson, A., Shan, R., Moore, S., and Kohlmeyer, A.: LAMMPS Molecular Dynamics Simulator, Available at:
28. Mortier, W.J., Ghosh, S.K., and Shankar, S.: Electronegativity-equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108, 4315 (1986).
29. Rappe, A.K. and Goddard, W.A.: Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358 (1991).
30. Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., Shin, Y.K., Junkermeier, C., Engel-Herbert, R., Janik, M.J., Aktulga, H.M., Verstraelen, T., Grama, A., and van Duin, A.C.T.: The ReaxFF reactive force-field: Development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).
31. Shan, T-R., Devine, B.D., Kemper, T.W., Sinnott, S.B., and Phillpot, S.R.: Charge-optimized many-body potential for the hafnium/hafnium oxide system. Phys. Rev. B 81, 125328 (2010).
32. Liang, T., Shan, T-R., Cheng, Y-T., Devine, B.D., Noordhoek, M., Li, Y., Lu, Z., Phillpot, S.R., and Sinnott, S.B.: Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (COMB) potentials. Mater. Sci. Eng., R 74, 255 (2013).
33. Assowe Dabar, O.: Study of the Corrosion Processes of Nickel by Molecular Dynamics with a ReaxFF Reactive Potential (French, Université de Bourgogne, France, 2012).
34. Psofogiannakis, G.M., McCleerey, J.F., Jaramillo, E., and van Duin, A.C.T.: ReaxFF reactive molecular dynamics simulation of the hydration of Cu-SSZ-13 zeolite and the formation of Cu dimers. J. Phys. Chem. C 119, 6678 (2015).
35. Van Duin, A.C.T., Bryantsev, V.S., Diallo, M.S., Goddard, W.A., Rahaman, O., Doren, D.J., Raymand, D., and Hermansson, K.: Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. J. Phys. Chem. A 114, 9507 (2010).
36. Wang, J., Fisher, E.S., and Manghnzmi, M.H.: Elastic constants of nickel oxide. Chin. Phys. Lett. 8, 153 (1991).
37. Towler, M.D., Allan, N.L., Harrison, N.M., Saunders, V.R., Macrodt, W.C., and Aprà, E.: Ab initio study of MnO and NiO. Phys. Rev. B 50, 5041 (1994).
38. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Szotek, Z., Temmerman, W.M., and Sutton, A.: Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of UO2 and NiO. Phys. Status Solidi A 166, 429 (1998).
39. Simmons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook, 2nd ed. (The MIT Press, Cambridge, Massachusetts, USA, 1971).
40. Du Plessis, P.d.V., van Tonder, S.J., and Alberts, L.: Elastic constants of a NiO single crystal: I (magnetic transitions). J. Phys. C: Solid State Phys. 4, 1983 (1971).
41. Uchida, N. and Saito, S.: Elastic constants and acoustic absorption coefficients in MnO, CoO, and NiO single crystals at room temperature. J. Acoust. Soc. Am. 51, 1602 (1972).
42. Hallberg, J. and Hanson, R.C.: The elastic constants of cuprous oxide. Phys. Status Solidi B 42, 305 (1970).
43. Beg, M.M. and Shapiro, S.M.: Study of phonon dispersion relations in cuprous oxide by inelastic neutron scattering. Phys. Rev. B 13, 1728 (1976).
44. Etters, R.D. and Hardouin Duparc, O.: Character of the magnetic disorder in ε-and δ-phase O2 monolayers on graphite. Phys. Rev. B 32, 7600 (1985).
45. Hardouin Duparc, O. and Etters, R.D.: Thermodynamic behavior of the structures and magnetic order of O2 monolayers on graphite. J. Chem. Phys. 86, 1020 (1987).
46. Wiame, F., Maurice, V., and Marcus, P.: Initial stages of oxidation of Cu(111). Surf. Sci. 601, 1193 (2007).
47. Fehlner, F.P. and Mott, N.F.: Low-temperature oxidation. Oxid. Met. 2, 59 (1970).
48. Holloway, P.H. and Hudson, J.B.: Kinetics of the reaction of oxygen with clean nickel single crystal surfaces. Surf. Sci. 43, 123 (1974).
49. Smeenk, R.G., Tromp, R.M., Van Der Veen, J.F., and Saris, F.W.: A quantitative ion-scattering study of the Ni(110) surface during the early stages of oxidation. Surf. Sci. 95, 156 (1980).
50. Holloway, P.H.: Chemisorption and oxide formation on metals: Oxygen–nickel reaction. J. Vac. Sci. Technol. 18, 653 (1981).
51. Wood, E.A.: Vocabulary of Surface Crystallography. J. Appl. Phys. 35, 1306 (1964).
52. Davisson, C. and Germer, L.H.: Diffraction of electrons by a crystal of nickel. Phys. Rev. 30, 705 (1927).
53. Spitzer, A. and Lüth, H.: The adsorption of oxygen on copper surfaces. Surf. Sci. 118, 136 (1982).
54. Sueyoshi, T., Sasaki, T., and Iwasawa, Y.: Molecular and atomic adsorption states of oxygen on Cu(111) at 100–300 K. Surf. Sci. 365, 310 (1996).
55. Lou, L., Nordlander, P., and Hellsing, B.: Theoretical study of O2 dissociation on copper and nickel clusters. Surf. Sci. 320, 320 (1994).
56. Devine, B., Shan, T-R., Cheng, Y-T., McGaughey, A.J.H., Lee, M., Phillpot, S.R., and Sinnott, S.B.: Atomistic simulations of copper oxidation and Cu/Cu2O interfaces using charge-optimized many-body potentials. Phys. Rev. B 84, 125308 (2011).
57. Dubois, L.H.: Oxygen chemisorption and cuprous oxide formation on Cu(111): A high resolution EELS study. Surf. Sci. 119, 399 (1982).
58. Zhou, G. and Yang, J.C.: Temperature effects on the growth of oxide islands on Cu(110). Appl. Surf. Sci. 222, 357 (2004).
59. Volterra, V.: On the equilibrium of multiply connected elastic bodies (in French). Ann. Sci. École Norm. Supér. 24, 401 (1907).
60. Basinski, Z.S. and Basinski, S.J.: Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Prog. Mater. Sci. 36, 89 (1992).
61. Mughrabi, H.: Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. A 40, 1257 (2009).
62. Mughrabi, H.: Fatigue, an everlasting materials problem—Still en vogue. Procedia Eng. 2, 3 (2010).


Molecular dynamics simulations of surface oxidation and of surface slip irreversibility under fatigue in oxygen environment

  • Zhengxuan Fan (a1), Olivier Hardouin Duparc (a2), Maxime Sauzay (a3), Boubakar Diawara (a4) and Adri C.T. van Duin (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed