Skip to main content Accessibility help

Molecular dynamic studies on MgO–Al2O3–SiO2 glass-ceramics

  • Peixin Zhang (a1), Caizhen Zhu (a1), Dongyun Zhang (a2), Qi Qiu (a1), Xiangzhong Ren (a1) and Jianhong Liu (a1)...


Three sets of original dynamics model parameters for MgO–Al2O3–SiO2 (MAS) system were reported for the first time in this paper; moreover, a new parameter optimization standard was put forward to study three different molecular dynamic models of MAS glass-ceramics. The limitations of the conventional parameter optimization methods were also studied. The results indicate: (i) Born-Mayer-Huggins (BMH) model can be only used to simulate amorphous MAS systems. Furthermore, both static optimization and a dynamics test are necessary; (ii) for structure optimization or macroproperties calculation, high accuracy has been achieved relative to the experimental results by using the core-shell (CS) model; (iii) partialQ model computes at a high speed, about twelve times that of the CS model; (iv) for a bulk system, the partialQ model can be first used to obtain an initial structure rapidly, followed by the CS model for high accuracy calculation. In this way, both accuracy and efficiency are achieved. When the model was used to simulate the cordierite crystal and the amorphous in the cordierite glass-ceramic, the results were consistent with the experiments and the structure data from the ab initio calculation. Simulations on amorphous structures in the cordierite glass-ceramic with various compositions displayed that the bond length or coordination numbers (CN) of Si–O and Al–O remained the same with increasing content of MgO, suggesting no change in the tetrahedral configuration of short-range structure. Although the bond length of Mg–O stays almost the same with the increasing content of MgO, the coordination number increases to a certain extent, and the content of O-bridge in SiO2 glass drops from 100%–60% in pyrope glass.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1Goel, A., Shaaban, E.R., Melo, F.C.L., Ribeiro, M.J., Ferreira, J.M.F.: Non-isothermal crystallization kinetic studies on MgO–Al2O3– SiO2–TiO2 glass. J. Non-Cryst. Solids 353, 2383 2007
2Faeghi-Nia, A., Marghussian, V.K., Taheri-Nassaj, E.: Effect of B2O3 on crystallization behavior and microstructure of MgO–SiO2–Al2O3–K2O–F glass-ceramics. Ceram. Int. 33, 773 2007
3Chen, G.H., Liu, X.Y.: Sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass-ceramics containing ZnO. J. Alloys Compd. 431, 282 2007
4Agathopoulos, S., Tulyaganov, D.U., Valerio, P.: A new model formulation of the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–F glass-ceramics. Biomaterials 26, 2255 2005
5Furic, K., Stoch, L., Dutkiewicz, J.: Raman study of TiO2 role in SiO2–Al2O3–MgO–TiO2–ZnO glass crystallization. Spectrochim. Acta, Part A 61, 1653 2005
6Azin, N.J., Camerucci, M.A., Cavalieri, A.L.: Crystallisation of non-stoichiometric cordierite glasses. Ceram. Int. 31, 18 2005
7Shao, H., Liang, K.M., Peng, F.: Crystallization kinetics of MgO–Al2O3–SiO2 glass-ceramics. Ceram. Int. 30, 927 2004
8Shi, M., Bai, X., Wang, X.F.: Ce4+-modified cordierite ceramics. Ceram. Int. 32, 723 2006
9Szabo, I.: Crystallization of magnesium aluminosilicate glasses. J. Non-Cryst. Solids 219, 128 1997
10Jankovic-Castvan, I., Lazarevic, S., Tanaskovic, D.: Phase transformation in cordierite gel synthesized by non-hydrolytic sol-gel route. Ceram. Int. 33, 1263 2007
11Menchi, A.M., Scian, A.N.: Mechanism of cordierite formation obtained by the sol-gel technique. Mater. Lett. 59, 2664 2005
12He, Y., Cheng, W.M., Cai, H.S.: Characterization of α-cordierite glass-ceramics from fly ash. J. Hazard. Mater. 120, 265 2005
13Shao, H., Liang, K.M., Zhou, F.: Microstructure and mechanical properties of MgO–Al2O3–SiO2–TiO2 glass-ceramics. Mater. Res. Bull. 40, 499 2005
14Azín, N.J., Camerucci, M.A., Cavalieri, A.L.: Crystallisation of non-stoichiometric cordierite glasses. Ceram. Int. 31, 189 2005
15Chi, Y.S., Shen, J.Y., Chen, X.X.: IR, DTA and XRD study of MgO–Al2O3–SiO2 glass-ceramic. J. Inorg. Mater. 17, 45 2002
16Chen, G.H.: Effect of replacement of MgO by CaO on sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass-ceramics. J. Mater. Sci. 42, 7239 2007
17Zhao, Y.H., Li, G.X., Ma, X.P.: Crystallization and mechanical properties of high strength glass ceramics in MgO–Al2O3–SiO2 system. J. Chin. Ceram. Soc. 31, 413 2003
18Garofalini, S.H.: Molecular dynamics simulation of the frequency spectrum of amorphous silica. J. Chem. Phys. 76, 3189 1982
19Zhu, C.Z., Zhang, P.X., Xu, Q.M., Liu, J.H., Ren, X.Z., Zhang, Q.L., Hong, W.L., Li, L.L.: Molecular dynamics study the effect of the ratio Ca/Al on CaO–Al2O3–SiO2 structure. Acta Phys. Sinica 55, 4795 2006
20O’Neill, J.D., Bass, J.D., Rossman, G.R., Geiger, C.A., Langer, K.: Elastic properties of pyrope. Phys. Chem. Miner. 17, 617 1991
21Isaak, D.G., Graham, E.K.: The elastic properties of an almandine- spessartine garnet and elasticity in the garnet solid solution series. J. Geophys. Res. 81, 2483 1976
22Mittal, R., Chaplot, S.L., Choudhury, N.: Lattice dynamics calculations of the phonon spectra and thermodynamic properties of the aluminosilicate garnets pyrope, grossular, and spessartine Mg3Al2Si3O12. Phys. Rev. B 64, 094302 2001
23Okuno, M., Kawamura, K.: Molecular dynamics calculations for Mg3Al2Si3O12 (pyrope) and Ca3Al2Si3O12 (grossular) glass structures. J. Non-Cryst. Solids 191, 249 1994
24Gale, J.D.: GULP-a computer program for symmetry adapted simulations of solids. J. Chem. Soc., Faraday Trans. 93, 629 1997
25Kokalj, A.: Plane-Wave Self-Consistent Field
26Bystrom, A.: The crystal structure of cordierite. Arkiv for Kemi. Mineralogi. Geologi B 15, 1 1942
27Hoffmann, S.H., Muchow, W.: The average structure of Mg(Al2Si3O10), a stuffed derivative of the high-quartz structure. Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchim. 134, 1 1971
28Predecki, P., Haas, J., Faber, J. Jr, Hitterman, R.L.: Structural aspects of the lattice thermal expansion of hexagonal cordierite. J. Am. Ceram. Soc. 70, 175 1987
29Toohill, K., Siegesmund, S., Bass, J.D.: Sound velocities and elasticity of cordierite and implications for deep crustal seismic anisotropy. Phys. Chem. Miner. 26, 333 1999
30van Beest, B.W.H., Kramer, G.J., van Santen, R.A.: Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955 1990
31Tilley, R.J.D.: Crystals and Crystal Structures John Wiley & Sons Ltd. The Atrium, Southern Gate, Chichester 2006
32Winkler, B., Dove, M.T., Leslie, M.: Static lattice energy minimization and lattice dynamics calculations on aluminosilicate materials. Am. Mineral. 76, 313 1991
33Stebbins, J.F., McMillian, P.: Compositional and temperature effects on five-coordinated silicon in ambient pressure silicate glasses. J. Non-Cryst. Solids 160, 116 1993
34Johnson, P.A.V., Wright, A.C., Sinclair, R.N.: Neutron scattering from vitreous silica II. Twin-axis diffraction experiments. J. Non-Cryst. Solids 58, 109 1983
35Poulsen, H.F., Neuefeind, J., Neumann, H.B., Schneider, J.R., Zeidler, M.D.: Amorphous silica studied by high energy x-ray diffraction. J. Non-Cryst. Solids 188, 63 1995


Molecular dynamic studies on MgO–Al2O3–SiO2 glass-ceramics

  • Peixin Zhang (a1), Caizhen Zhu (a1), Dongyun Zhang (a2), Qi Qiu (a1), Xiangzhong Ren (a1) and Jianhong Liu (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed