Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T20:46:38.968Z Has data issue: false hasContentIssue false

Modification of titania nanoparticles for photocatalytic antibacterial activity via a colloidal route with glycine and subsequent annealing

Published online by Cambridge University Press:  16 August 2012

Mamoru Senna*
Affiliation:
Laboratoire de Technologie des Poudres, EPFL, CH-1015 Lausanne, Switzerland; and Faculty of Science and Technology, Keio University, J-223-8522 Yokohama, Japan
Nicholas Myers
Affiliation:
Laboratoire de Technologie des Poudres, EPFL, CH-1015 Lausanne, Switzerland
Anne Aimable
Affiliation:
Ecole Nationale Supérieure de Céramique Industrielle, Limoges 87068, France
Vincent Laporte
Affiliation:
Interdisciplinary Centre for Electron Microscopy, EPFL, CH-1015 Lausanne, Switzerland
Cesar Pulgarin
Affiliation:
Groupe de Procédés Avancés d’Oxydation, EPFL, CH-1015 Lausanne, Switzerland
Oualid Baghriche
Affiliation:
Groupe de Procédés Avancés d’Oxydation, EPFL, CH-1015 Lausanne, Switzerland
Paul Bowen
Affiliation:
Laboratoire de Technologie des Poudres, EPFL, CH-1015 Lausanne, Switzerland
*
a)Address all correspondence to this author. e-mail: senna@applc.keio.ac.jp
Get access

Abstract

Changes in the colloid-chemical and photocatalytic properties of titania nanoparticles by attrition milling in the presence of glycine (Gly) and subsequent heat treatment were examined. By milling at 1500 rpm for 6 h, the average particle size was decreased from 123 to 85 nm, with simultaneous decrease in the specific surface area from 35.1 to 23.5 m2/g. Interfacial reactions between titania and Gly were confirmed by Fourier transform infrared spectroscopy, from the blue shift of the COO related vibrational bands by 25 cm−1, relative to the same band from the pristine Gly. The bimodal N1s x-ray photoelectron spectroscopy peak similar to that from the reported titania—amino acid complex is another indication of the complex formation with the participation of nitrogen. When the dispersion was dried and calcined at 500 °C in air, the powder exhibited pale yellow color. Diffuse reflectance spectroscopy showed significant visible light absorption, suggesting nitrogen incorporation into titania. The fired product showed high photocatalytic antibacterial activity by irradiation of blue light centered at around 440 nm, using Escherichia coli as a specimen of bacterial species. Thus, the present Gly-modified titania nanoparticles could be used for eliminating indoor bacteria under soft blue illumination. The series of interfacial chemical processes involved are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bowen, P., Hofmann, H., Staiger, M., Steiger, R., Brugger, P-A., and Peternell, K.: Colloidal processing of nanoceramic powders for porous ceramic film applications. Key Eng. Mater. 206213, 1977 (2002).Google Scholar
Bowen, P. and Carry, C.: From powders to sintered pieces: Forming, transformations and sintering of nanostructured ceramic oxides. Powder Technol. 128, 248 (2002).CrossRefGoogle Scholar
Staiger, M., Bowen, P., Ketterer, J., and Bohonek, J.: Particle size distribution measurement and assessment of agglomeration of commercial nanosized ceramic particles. J. Dispersion Sci. Technol. 23, 619 (2002).Google Scholar
Bowen, P., Carry, C., Luxembourg, D., and Hofmann, H.: Colloidal processing and sintering of nanosized transition aluminas. Powder Technol. 157, 100 (2005).CrossRefGoogle Scholar
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.: Environmental application of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., and Ye, J.: Nanophotocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229 (2012).Google Scholar
Tachikawa, T., Fujitsuka, M., and Majima, T.: Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts. J. Phys. Chem. C 111, 5259 (2007).Google Scholar
Lee, M.K., Shih, T.H., and Shih, C.M.: Highly visible photocatalytic activity of fluorine- and nitrogen-codoped nanocrystalline anatase phase titanium oxide converted from ammonium oxotrifluorotitanate. IEEE Trans. Nanotechnol. 6, 316 (2007).Google Scholar
Henderson, M.A.: A surface science perspective onTiO2 photocatalysis. Surf. Sci. Rep. 66, 185 (2011).CrossRefGoogle Scholar
Liu, G., Wang, L., Yang, H.G., Cheng, H.M., and Lu, G.Q.: Titania-based photocatalysts - crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831 (2010).CrossRefGoogle Scholar
Xiang, Q., Yu, J., and Jaroniec, M.: Nitrogen- and sulfur-codoped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13, 4853 (2011).Google Scholar
Yu, J., Wang, W., Cheng, B., and Su, B-L.: Enhancement of photocatalytic activity of mesoporous TiO2 powders by hydrothermal surface fluorination treatment. J. Phys. Chem. C 113, 6743 (2009).Google Scholar
Liu, S., Yu, J., and Wang, W.: Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2. Phys. Chem. Chem. Phys. 12, 12308 (2010).Google Scholar
Liu, S., Yu, J., and Jaroniec, M.: Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem. Mater. 23, 4085 (2011).Google Scholar
Livraghi, S., Chierotti, M.R., Giamello, E., Magnacca, G., Paganini, M.C., Cappelletti, C., and Bianchi, C.L.: Nitrogen-doped titanium dioxide active in photocatalytic reactions with visible light: A multi-technique characterization of differently prepared materials. J. Phys. Chem. C 112, 17244 (2008).Google Scholar
Liu, G., Wang, X., Chen, Z., Cheng, M.M., and Lu, G.Q.: The role of crystal phase in determining photocatalytic activity of nitrogen-doped TiO2. J. Colloid Interface Sci. 329, 331 (2009).CrossRefGoogle ScholarPubMed
Rattanakam, R. and Supothina, S.: Visible-light-sensitive N-doped TiO2 photocatalysts prepared by a mechanochemical method: Effect of a nitrogen source. Res. Chem. Intermed. 35, 263 (2009).Google Scholar
Ranjit, K.T., Joselevich, E., and Willner, I.: Enhanced photocatalytic degradation of π-donor organic compounds by N,N′-dialkyl-4,4′-bipyridinium-modified TiO2 particles. J. Photochem. Photobiol., A, 99, 85 (1996).Google Scholar
Watanabe, N., Horikoshi, S., Hidaka, H., and Serpone, N.: On the recalcitrant nature of the triazinic ring species, cyanuric acid, to degradation in Fenton solutions and in UV-illuminated TiO2 (naked) and fluorinated TiO2 aqueous dispersions. J. Photochem. Photobiol., A 174, 229 (2005).Google Scholar
El Mekkawi, D. and Abdel-Mottaleb, M.S.A.: The interaction and photostability of some xanthenes and selected azo sensitizing dyes with TiO2 nanoparticles. Int. J. Photoenergy 7, 95 (2005).Google Scholar
Senna, M., Sepelak, V., Shi, J., Bauer, B., Feldhoff, A., Laporte, V., and Becker, K-D.: Introduction of oxygen vacancies and fluorine into TiO2 nanoparticles by comilling with PTFE. J. Solid State Chem. 187, 51 (2012).CrossRefGoogle Scholar
Ahn, M.H., Cho, E.S., and Kwon, S.J.: Effect of the duty ratio on the indium tin oxide (ITO) film deposited by in-line pulsed DC magnetron sputtering method for resistive touch panel. Appl. Surf. Sci. 258, 1242 (2011).Google Scholar
Liu, H., Avrutin, V., Izyumskaya, N., Özgür, Ü., and Morkoç, H.: Transparent conducting oxides for electrode applications in light-emitting and -absorbing devices. Superlattices Microstruct. 48, 458 (2010).Google Scholar
Iwasa, K., Isobe, T., and Senna, M.: Enhanced densification of ITO ceramics for sputter target through wet mechanochemical processing. Solid State Ionics 101103, 71 (1997).Google Scholar
ISO Standard 20743: Evaluation of the Antibacterial Activity of Biocidal Products (International Organization for Standardization, Geneva, Switzerland, 2007).Google Scholar
Flatt, R.J. and Bowen, P.: Yodel: A yield stress model for suspensions. J. Am. Ceram. Soc. 89, 1244 (2006).Google Scholar
Vargová, Z., Almási, M., Arabuli, L., Györyová, K., Zelenák, V., and Kuchár, J.: Utilization of IR spectral detailed analysis for coordination mode determination in novel Zn–cyclen–amino acid complexes. Spectrochim. Acta A78, 788 (2011).Google Scholar
Rajh, T., Chen, L.X., Lukas, K., Liu, T., Thurnauer, M.C., and Tiede, D.M.: Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B106, 10543 (2002).Google Scholar
Unpublished data, to appear.Google Scholar
Wilson, J.N., Dowler, R.M., and Idriss, H.: Adsorption and reaction of glycine on the rutile TiO2 (011) single crystal surface. Surf. Sci. 605, 206 (2011).Google Scholar
Polleu, J., Pinna, N., Antonietti, M., Hess, C., Wild, U., Schlögl, R., and Niederberger, M.: Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. Chem. Eur. J. 11, 3541 (2005).CrossRefGoogle Scholar
Yu, J., Zhoua, M., Chenga, B., and Zhaoa, X.: Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders. J. Mol. Catal. A: Chem. 246, 176 (2006).Google Scholar
Zhou, M. and Yu, J.: Preparation and enhanced daylight-induced photocatalytic activity of C, N, S-tridoped titanium dioxide powders. J. Hazard. Mater. 152, 1229 (2008).CrossRefGoogle Scholar
Li, J., Wang, Z., Yang, X., Hu, L., Liu, Y., and Wang, C.: Evaluate the pyrolysis pathway of glycine and glycylglycine by TG–FTIR. J. Anal. Appl. Pyrolysis 80, 247 (2007).Google Scholar
Gumy, D., Bowen, P., Morais, C., Pulgarin, C., Giraldo, S., Haijdu, R., and Kiwi, J.: Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E coli) under solar simulated light: Influence of the isoelectric point. Appl. Catal., B 63, 76 (2006),Google Scholar
Rengifo-Herrera, J.A., Mielczarski, E., Mielczarski, J., Castillo, N.C., Kiwi, J., and Pulgarin, C.: Escherichia coli inactivation by N, S codoped commercial TiO2 powders under UV and visible light. Appl. Catal., B 84, 448 (2008).Google Scholar
Rengifo-Herrera, J.A., Pierzchała, K., Sienkiewicz, A., Forro, L., Kiwi, J., and Pulgarin, C.: Abatement of organics and Escherichia coli by N, S codoped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light. Appl. Catal., B 88, 298 (2009).Google Scholar
Rengifo-Herrera, J.A., Kiwi, J., and Pulgarin, C.: N, S codoped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation. J. Photochem. Photobiol., A 205, 109 (2009).CrossRefGoogle Scholar
Rengifo-Herrera, J.A. and Pulgarin, C.: Photocatalytic activity of N, S codoped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Sol. Energy 84, 37 (2010).Google Scholar
Rengifo-Herrera, J.A., Pierzchała, K., Sienkiewicz, A., Forro, L., Kiwi, J., Moser, J.E., and Pulgarin, C.: Synthesis, characterization, and photocatalytic activities of nanoparticulate N, S-codoped TiO2 having different surface-to-volume ratios. J. Phys. Chem. C 114, 2717 (2010).Google Scholar
Xiang, Q., Yu, J., and Wong, P.K.: Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J. Colloid Interface Sci. 357, 163 (2011).Google Scholar