Skip to main content Accessibility help
×
Home

A model for the indentation size effect in polycrystalline alloys coupling intrinsic and extrinsic length scales

  • Simon P.A. Gill (a1) and Christopher J. Campbell (a1)

Abstract

The measured hardness of a metal crystal depends on a variety of length scales. Microstructural features, such as grain size and precipitate spacing, determine the intrinsic material length scale. Extrinsic (test) length scales, such as the indentation depth, lead to the indentation size effect (ISE), whereby it is typically found that smaller is stronger. Nix and Gao [J. Mech. Phys. Solids46, 411 (1998)] developed a widely used model for interpreting the ISE based on forest hardening in single crystalline pure metals. This work extends that model to consider the hardness of polycrystals and alloys, as well as introducing a finite limit to the hardness at very small extrinsic length scales. The resulting expressions are validated against data from the literature. It is shown that a reasonable estimate of the intrinsic material length scale can be extracted from a suite of hardness tests conducted across a range of indentation depths using spherical indenters of various radii.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: spg3@leicester.ac.uk

References

Hide All
1.Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).
2.Bushby, A.J. and Dunstan, D.J.: Plasticity size effects in nanoindentation. J. Mater. Res. 19, 137 (2003).
3.Pharr, G.M. and Oliver, W.C.: Nanoindentation of silver-relations between hardness and dislocation structure. J. Mater. Res. 4, 94 (1988).
4.Campbell, C.J. and Gill, S.P.A.: An analytical model for the flat punch indentation size effect. Int. J. Solids Struct. (2019). (in press).
5.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).
6.Swadener, J.G., George, E.P., and Pharr, G.M.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681 (2002).
7.Pharr, G.M., Herbert, E.G., and Gao, Y.: The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271 (2010).
8.Ehrler, B., Dunstan, D.J., Zhu, T.T., Hou, X.D., P’ng, K.M.Y., and Bushby, A.J.: The strength of thin films, small structures and materials under localised stresses. Thin Solid Films 517, 3781 (2009).
9.Gladman, T.: Precipitation hardening in metals. Mater. Sci. Technol. 15, 30 (1999).
10.Morris, J.W.: Dislocation Plasticity: Overview (2018). Available at: http://www.mse.berkeley.edu/groups/morris/MSE205/Extras/dislocation%20plasticity.pdf (accessed December 13, 2018).
11.Zhu, T.T., Bushby, A.J., and Dunstan, D.J.: Materials mechanical size effects: A review. Mater. Technol. 23, 193 (2008).
12.Ehrler, B., Hou, X.D., Zhu, T.T., P’ng, K.M.Y., Walker, C.J., Bushby, A.J., and Dunstan, D.J.: Grain size and sample size interact to determine strength in a soft metal. Philos. Mag. 88, 3043 (2008).
13.Greer, J.R. and Nix, W.D.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).
14.Lefebvre, S., Devincre, B., and Hoc, T.: Simulation of the Hall–Petch effect in ultra-fine grained copper. Mater. Sci. Eng., A 400–401, 150 (2005).
15.Dunstan, D.J., Ehrler, B., Bossis, R., Joly, S., P’ng, K.M.Y., and Bushby, A.J.: Elastic limit and strain hardening of thin wires in torsion. Phys. Rev. Lett. 103, 155501 (2009).
16.Jones, D.R. and Ashby, M.F.: Engineering Materials 1: An Introduction to Properties, Applications and Design (Elsevier, Oxford, England, 2011).
17.Labusch, R.: A statistical theory of solid solution hardening. Phys. Status Solidi B 41, 659 (1970).
18.Atkinson, H. and Gill, S.: Modelling creep in nickel alloys in high temperature power plants. In Structural Alloys for Power Plants, Shirzadi, A. and Jackson, S., eds. (Elsevier, Cambridge, U.K., 2014); p. 447.
19.Queyreau, S., Monnet, G., and Devincre, B.: Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 58, 5586 (2010).
20.Rester, M., Motz, C., and Pippan, R.: Where are the geometrically necessary dislocations accommodating small imprints? J. Mater. Res. 24, 647 (2008).
21.Durst, K., Backes, B., and Göken, M.: Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52, 1093 (2005).
22.Huang, Y., Zhang, F., Hwang, K.C., Nix, W.D., Pharr, G.M., and Feng, G.: A model of size effects in nano-indentation. J. Mech. Phys. Solids 54, 1668 (2006).
23.McElhaney, K.W., Vlassak, J.J., and Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1997).
24.Sousa, T.G.d., Sordi, V.L., and Brandão, L.P.: Dislocation density and texture in copper deformed by cold rolling and ecap. Mater. Res. 21 (2018).
25.Feng, G. and Nix, W.D.: Indentation size effect in MgO. Scr. Mater. 51, 599 (2004).
26.Hou, X.D., Bushby, A.J., and Jennett, N.M.: Study of the interaction between the indentation size effect and Hall–Petch effect with spherical indenters on annealed polycrystalline copper. J. Phys. D: Appl. Phys. 41, 074006 (2008).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed