Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-19T10:05:47.877Z Has data issue: false hasContentIssue false

Model for electron-beam-induced crystallization of amorphous Me–Si–C (Me = Nb or Zr) thin films

Published online by Cambridge University Press:  21 November 2014

Olof Tengstrand*
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden 581 83, Linköping, Sweden
Nils Nedfors
Affiliation:
Department of Chemistry, The Ångström Laboratory, Uppsala University, Sweden 751 21, Uppsala, Sweden
Matilda Andersson
Affiliation:
Department of Chemistry, The Ångström Laboratory, Uppsala University, Sweden 751 21, Uppsala, Sweden
Jun Lu
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden 581 83, Linköping, Sweden
Ulf Jansson
Affiliation:
Department of Chemistry, The Ångström Laboratory, Uppsala University, Sweden 751 21, Uppsala, Sweden
Axel Flink
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden 581 83, Linköping, Sweden and Impact Coatings AB, Sweden 582 16, Linköping, Sweden
Per Eklund*
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden 581 83, Linköping, Sweden
Lars Hultman
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden 581 83, Linköping, Sweden
*
a)Address all correspondence to these authors. e-mail: olote@ifm.liu.se
Get access

Abstract

We use transmission electron microscopy (TEM) for in situ studies of electron-beam-induced crystallization behavior in thin films of amorphous transition metal silicon carbides based on Zr (group 4 element) and Nb (group 5). Higher silicon content stabilized the amorphous structure while no effects of carbon were detected. Films with Nb start to crystallize at lower electron doses than the Zr-containing ones. During the crystallization, equiaxed MeC grains are formed in all samples with larger grains for ZrC (∼5 nm) compared to NbC (∼2 nm). The phenomenon of self-terminating crystallization at a dimension of 2–5 nm is explained by segregation of Si that is expelled from growing metal carbide grains into the surrounding amorphous phase matrix, which limits diffusion of the metal and carbon.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zehnder, T., Matthey, J., Schwaller, P., Klein, A., Steinmann, P.A., and Patscheider, J.: Wear protective coatings consisting of TiC-SiC-a-C:H deposited by magnetron sputtering. Surf. Coat. Technol. 163, 238 (2003).CrossRefGoogle Scholar
Bertóti, I., Tóth, A., Mohai, M., and Szépvölgyi, J.: Chemical structure and mechanical properties of Si-containing a-C:H and a-C thin films and their Cr- and W-containing derivatives. Surf. Coat. Technol. 206, 630 (2011).CrossRefGoogle Scholar
Krzanowski, J.E. and Wormwood, J.: Microstructure and mechanical properties of Mo-Si-C and Zr-Si-C thin films: Compositional routes for film densification and hardness enhancement. Surf. Coat. Technol. 201, 2942 (2006).CrossRefGoogle Scholar
Eklund, P., Emmerlich, J., Högberg, H., Wilhelmsson, O., Isberg, P., Birch, J., Persson, P.O.Å., Jansson, U., and Hultman, L.: Structural, electrical, and mechanical properties of nc-TiC/a-SiC nanocomposite thin films. J. Vac. Sci. Technol., B 23, 2486 (2005).CrossRefGoogle Scholar
Nakamori, T., Tsuruoka, T., Kanamori, T., and Shibata, S.: Effect of film thickness on Ta-Si-C high resistivity thin films for thermal printing heads. Trans. Inst. Electron., Inf. Commun. Eng., Sect. E 70, 1133 (1987).Google Scholar
Schüler, A. and Oelhafen, P.: Photoelectron spectroscopic characterization of titanium-containing amorphous hydrogenated silicon-carbon films (a-Si1-xCx:H/Ti). Appl. Phys. A 73, 237 (2001).CrossRefGoogle Scholar
Munteanu, D., Ionescu, C., Olteanu, C., Munteanu, A., Davin, F., Cunha, L., Moura, C., and Vaz, F.: Influence of composition and structural properties in the tribological behaviour of magnetron sputtered Ti-Si-C nanostructured thin films, prepared at low temperature. Wear 268, 552 (2010).CrossRefGoogle Scholar
Rester, M., Neidhardt, J., Eklund, P., Emmerlich, J., Ljungcrantz, H., Hultman, L., and Mitterer, C.: Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance. Mater. Sci. Eng., A 429, 90 (2006).Google Scholar
Eklund, P.: Novel ceramic Ti-Si-C nanocomposite coatings for electrical contact applications. Surf. Eng. 23, 406 (2007).CrossRefGoogle Scholar
Nedfors, N., Tengstrand, O., Flink, A., Eklund, P., Hultman, L., and Jansson, U.: Characterization of amorphous and nanocomposite Nb-Si-C thin films deposited by DC magnetron sputtering. Thin Solid Films 545, 272 (2013).CrossRefGoogle Scholar
Gulbinski, W., Suszko, T., Gilewicz, A., Warcholinski, B., and Kuklinski, Z.: Structure and high-temperature tribological behavior of Ti-Si-C nanocomposite thin films. Surf. Coat. Technol. 200, 4179 (2006).CrossRefGoogle Scholar
Cunha, L., Vaz, F., Moura, C., Munteanu, D., Lonescu, C., Rivière, J.P., and Le Bourhis, E.: Ti-Si-C thin films produced by magnetron sputtering: Correlation between physical properties, mechanical properties and tribological behavior. J. Nanosci. Nanotechnol. 10, 2926 (2010).Google Scholar
Andersson, M., Urbonaite, S., Lewin, E., and Jansson, U.: Magnetron sputtering of Zr-Si-C thin films. Thin Solid Films 520, 6375 (2012).CrossRefGoogle Scholar
Phani, A.R., Krzanowski, J.E., and Nainaparampil, J.J.: Structural and mechanical properties of TiC and Ti-Si-C films deposited by pulsed laser deposition. J. Vac. Sci. Technol., A 19, 2252 (2001).Google Scholar
Lopes, C., Parreira, N.M.G., Carvalho, S., Cavaleiro, A., Rivière, J.P., Le Bourhis, E., and Vaz, F.: Magnetron sputtered Ti-Si-C thin films prepared at low temperatures. Surf. Coat. Technol. 201, 7180 (2007).CrossRefGoogle Scholar
Koutzaki, S.H., Krzanowski, J.E., and Nainaparampril, J.J.: Structure and mechanical properties of Ti-Si-C coatings deposited by magnetron sputtering. J. Vac. Sci. Technol., A 19, 1912 (2001).Google Scholar
Naka, M., Sakai, H., Maeda, M., and Mori, H.: Formation and thermal stability of amorphous Ti-Si-C alloys. Mater. Sci. Eng., A 226228, 774 (1997).CrossRefGoogle Scholar
Endrino, J.L. and Krzanowski, J.E.: Nanostructure and mechanical properties of WC-SiC thin films. J. Mater. Res. 17, 3163 (2002).Google Scholar
Kádas, K., Andersson, M., Holmström, E., Wende, H., Karis, O., Urbonaite, S., Butorin, S.M., Nikitenko, S., Kvashnina, K.O., Jansson, U., and Eriksson, O.: Structural properties of amorphous metal carbides: Theory and experiment. Acta Mater. 60, 4720 (2012).CrossRefGoogle Scholar
Tengstrand, O., Nedfors, N., Andersson, M., Lu, J., Jansson, U., Flink, A., Eklund, P., and Hultman, L.: Beam-induced crystallization of amorphous Me-Si-C (Me = Nb or Zr) thin films during transmission electron microscopy. MRS Commun. 3(3), 151 (2013).CrossRefGoogle Scholar
Banhart, F.: Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181 (1999).CrossRefGoogle Scholar
Du, X., Takeguchi, M., Tanaka, M., and Furuya, K.: Formation of crystalline Si nanodots in SiO2 films by electron irradiation. Appl. Phys. Lett. 82, 1108 (2003).Google Scholar
Kilaas, R.: Optimal and near-optimal filters in high-resolution electron microscopy. J. Microsc. 190, 45 (1998).Google Scholar
Fager, H., Andersson, J.M., Lu, J., Jöesaar, M.P.J., Odén, M., and Hultman, L.: Growth of hard amorphous TiAlSiN thin films by cathodic arc evaporation. Surf. Coat. Technol. 235, 376 (2013).Google Scholar
Egerton, R.F., Li, P., and Malac, M.: Radiation damage in TEM and SEM. Micron 35, 399 (2004).CrossRefGoogle ScholarPubMed
Stratton, W.G., Hamann, J., Perepezko, J.H., and Voyles, P.M.: Electron beam induced crystallization of amorphous Al-based alloys in the TEM. Intermetallics 14, 1061 (2006).Google Scholar
Edmondson, P.D., Weber, W.J., Namavar, F., and Zhang, Y.: Determination of the displacement energies of O, Si and Zr under electron beam irradiation. J. Nucl. Mater. 422, 86 (2012).CrossRefGoogle Scholar
Bae, I.T., Ishimaru, M., and Hirotsu, Y.: Structural changes of SiC under electron-beam irradiation: Temperature dependence. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 315 (2006).Google Scholar
Nagase, T., Sanda, T., Nino, A., Qin, W., Yasuda, H., Mori, H., Umakoshi, Y., and Szpunar, J.A.: MeV electron irradiation induced crystallization in metallic glasses: Atomic structure, crystallization mechanism and stability of an amorphous phase under the irradiation. J. Non-Cryst. Solids 358, 502 (2012).Google Scholar
Fu, E.G., Carter, J., Martin, M., Xie, G., Zhang, X., Wang, Y.Q., Littleton, R., and Shao, L.: Electron irradiation-induced structural transformation in metallic glasses. Scr. Mater. 61, 40 (2009).Google Scholar
Inoue, A. and Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).CrossRefGoogle Scholar
Toth, L.E.: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
Jansson, U. and Lewin, E.: Sputter deposition of transition-metal carbide films – A critical review from a chemical perspective. Thin Solid Films 536, 1 (2013).CrossRefGoogle Scholar
Urbonaite, S., Wachtmeister, S., Mirguet, C., Coronel, E., Zou, W.Y., Csillag, S., and Svensson, G.: EELS studies of carbide derived carbons. Carbon 45, 2047 (2007).Google Scholar
Mukherjee, M.: Silicon Carbide – Materials, Processing and Applications in Electronic Devices (InTech, Rijeka, 2011).Google Scholar
Okamoto, H.: C-Zr (Carbon-Zirconium). J. Phase Equilib. 17, 162 (1996).Google Scholar
Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed. (Springer, New York, 2009).Google Scholar