Skip to main content Accessibility help
×
Home

MnFeTiOx/attapulgite catalysts with excellent potassium resistance for SCR of NOx with NH3 at low temperatures

  • Yiran Tang (a1), Yiyang Tao (a2), Jiayi Wu (a1), Linjing Xu (a1), Xiaoyan Huang (a1), Xingmeng Zhou (a1), Aijuan Xie (a1), Shiping Luo (a1), Chao Yao (a1) and Xiazhang Li (a1)...

Abstract

A series of metal oxides (MnFeOx, MnCrOx, MnTiOx, and MnFeTiOx) supported on attapulgite (ATP) were synthesized by coprecipitation for the low-temperature selective catalytic reduction (SCR) of NOx with NH3. Then, they were subjected to appropriate characterizations for their properties (XRD, TEM, BET, XPS, etc.). The catalytic activity of MnFeTiOx/ATP catalyst was over 95% NOx conversion within a wide temperature window between of 175 and 300 °C, and 88% N2 selectivity. Moreover, MnFeTiOx/ATP presented excellent potassium resistance relative to the traditional V–W–Ti catalyst, and its denitration performance was significantly improved. The NOx conversion rate could be restored to nearly 90% at 210 °C after removing potassium via washing of K–MnFeTiOx/ATP. In addition, the MnFeTiOx/ATP showed better SO2 resistance and stability than the traditional V–W–Ti catalyst. Therefore, the MnFeTiOx/ATP catalyst has been proved to have broad prospects in NH3-SCR.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: aijuan_xie@126.com

Footnotes

Hide All
c)

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Blanco, J., Avila, P., Suárez, S., Yates, M., Martin, J.A., Marzo, L., and Knapp, C.: CuO/NiO monolithic catalysts for NOx removal from nitric acid plant flue gas. Chem. Eng. J. 97, 19 (2004).
2.Forzatti, P.: Present status and perspectives in de-NOx SCR catalysis. Appl. Catal., B 222, 221236 (2001).
3.Li, J., Chang, H., Ma, L., Hao, J., and Yang, R.T.: Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catal. Today 175, 147156 (2011).
4.Cai, S., Hu, H., Li, H., Shi, L., and Zhang, D.: Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3: Improvement of catalytic activity and SO2 tolerance. Nanoscale 8, 35883598 (2016).
5.O’Malley, A.J., Hitchcock, I., Sarwar, M., Silverwood, I.P., Hindocha, S., Catlow, C.R., York, A.E., and Collier, P.J.: Ammonia mobility in chabazite: Insight into the diffusion component of the NH3-SCR process. Phys. Chem. Chem. Phys. 18, 1715917168 (2016).
6.Guo, Z., Liang, Q.H., Yang, Z., Liu, S., Huang, Z.H., and Kang, F.: Modifying porous carbon nanofibers with MnOx–CeO2–Al2O3 mixed oxides for NO catalytic oxidation at room temperature. Catal. Sci. Technol. 6, 422425 (2016).
7.Jiang, H., Wang, Q., Wang, H., Chen, Y., and Zhang, M.: MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3. ACS Appl. Mater. Interfaces 8, 2681726826 (2016).
8.Yao, X., Kong, T., Yu, S., Li, L., Yang, F., and Dong, L.: Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature. Appl. Surf. Sci. 402, 208217 (2017).
9.Ettireddy, P.R., Ettireddy, N., Mamedov, S., Boolchand, P., and Smirniotis, P.G.: Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl. Catal., B 76, 123134 (2007).
10.Tang, F., Xu, B., Shi, H., Qiu, J., and Fan, Y.: The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3. Appl. Catal., B 94, 7176 (2010).
11.Kröcher, O. and Elsener, M.: Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution: I. Catalytic studies. Appl. Catal., B 77, 215227 (2008).
12.Chen, L., Li, J.H., and Ge, M.: The poisoning effect of alkali metals doping over nano V2O5–WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem. Eng. J. 170, 531537 (2011).
13.Wan, Q., Duan, L., Li, J., Chen, L., He, K., and Hao, J.: Deactivation performance and mechanism of alkali (earth) metals on V2O5–WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas. Catal. Today 175, 189195 (2011).
14.Castellino, F., Jensen, A.D., Johnsson, J.E., and Fehrmann, R.: Influence of reaction products of K-getter fuel additives on commercial vanadia-based SCR catalysts part I. Potassium phosphate. Appl. Catal., B 86, 196205 (2009).
15.Zheng, Y.J., Jensen, A.D., Johnsson, J.E., and Thogersen, J.R.: Deactivation of V2O5–WO3–TiO2 SCR catalyst at biomass fired power plants: Elucidation of mechanisms by lab and pilot-scale experiments. Appl. Catal., B 83, 186194 (2008).
16.Kong, M., Liu, Q., Zhou, J., Jiang, L., Tian, Y., Yang, J., Ren, S., and Li, J.: Effect of different potassium species on the deactivation of V2O5–WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl, and K2O. Chem. Eng. J. 348, 637643 (2018).
17.Gao, F., Tang, X., Yi, H., Zhao, S., Wang, J., Shi, Y., and Meng, X.: Novel Co-or Ni–Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature. Appl. Surf. Sci. 443, 103113 (2018).
18.Zamudio, M.A., Russo, N., and Fino, D.: Low temperature NH3 selective catalytic reduction of NOx over substituted MnCr2O4 spinel-oxide catalysts. Ind. Eng. Chem. Res. 11, 66686672 (2011).
19.Liu, Z., Zhu, J., Li, J., Ma, L., and Woo, S.I.: Novel Mn–Ce–Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl. Mater. Interfaces 16, 1450014508 (2014).
20.Wei, Y., Liu, J., Su, W., Sun, Y., and Zhao, Y.: Controllable synthesis of Ce-doped α-MnO2 for low-temperature selective catalytic reduction of NO. Catal. Sci. Technol. 7, 15651572 (2017).
21.Yang, S., Qi, F., Xiong, S., Dang, H., Liao, Y., Wong, P.K., and Li, J.: MnOx supported on Fe–Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity. Appl. Catal., B 181, 570580 (2016).
22.Ying, W., Hao, F., and Rui, W.: Transition metals (Co, Zr, Ti) modified iron-samarium oxide as efficient catalysts for selective catalytic reduction of NOx at low-temperature. Appl. Surf. Sci. 459, 6373 (2018).
23.Liu, Y., Kang, Y., Mu, B., and Wang, A.: Attapulgite/bentonite interactions for methylene blue adsorption characteristics from aqueous solution. Chem. Eng. J. 237, 403410 (2014).
24.Zhou, X., Huang, X., Xie, A., Luo, S., Yao, C., Li, X., and Zuo, S.: V2O5-decorated Mn–Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 326, 10741085 (2017).
25.Luo, S., Zhou, W., Xie, A., Wu, F., Yao, C., Li, X., Zuo, S., and Liu, T.: Effect of MnO2 polymorphs structure on the selective catalytic reduction of NOx with NH3 over TiO2–Palygorskite. Chem. Eng. J. 286, 291299 (2016).
26.Liu, F., Shan, W., Lian, Z., Xie, L., Yang, W., and He, H.: Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx. Catal. Sci. Technol. 10, 26992707 (2013).
27.Shan, W., Liu, F., He, H., Shi, X., and Zhang, C.: A superior Ce–W–Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Appl. Catal., B 115, 100106 (2012).
28.Qiu, L., Pang, D., Zhang, C., Meng, J., Zhu, R., and Ouyang, F.: In situ IR studies of Co and Ce doped Mn/TiO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. Appl. Surf. Sci. 357, 189196 (2015).
29.Słoczyński, J., Janas, J., Machej, T., Rynkowski, J., and Stoch, J.: Catalytic activity of chromium spinels in SCR of NO with NH3. Appl. Catal., B 24, 4560 (2000).
30.Gao, C., Shi, J-W., Fan, Z., Yu, Y., Chen, J., Li, Z., and Niu, C.: Eu–Mn–Ti mixed oxides for the SCR of NOx with NH3: The effects of Eu-modification on catalytic performance and mechanism. Fuel Process. Technol. 167, 322333 (2017).
31.Putluru, S.R., Schill, L., Jensen, A.D., Siret, B., Tabaries, F., and Fehrmann, R.: Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation-promising for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal., B 165, 628635 (2015).
32.Li, Y., Li, Y., Wang, P., Hua, W., Zhang, S., Shi, Q., and Zhan, S.: Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods. Chem. Eng. J. 330, 213222 (2017).
33.Chen, Q-L., Guo, R-T., Wang, Q-S., Pan, W-G., Wang, W-H., Yang, N-Z., Lu, C-Z., and Wang, S-X.: The catalytic performance of Mn/TiWOx catalyst for selective catalytic reduction of NOx with NH3. Fuel 181, 852858 (2016).
34.Liu, R., Jiang, Y-W., Fan, H., Lu, Q., and Gao, F.: Metal ions induce growth and magnetism alternation of α-Fe2O3 crystals bound by high-index facets. Chem.–Eur. J. 18, 89578963 (2012).
35.Fang, D., Xie, J., Mei, D., Zhang, Y., He, F., Liu, X., and Li, Y.: Effect of CuMn2O4 spinel in Cu–Mn oxide catalysts on selective catalytic reduction of NOx with NH3 at low temperature. RSC Adv. 49, 2554025551 (2014).
36.Guo, R-T., Li, M-Y., Sun, P., Liu, S.M., Wang, S-X., Pan, W-G., Liu, S-W., Liu, J., and Sun, X.: The enhanced resistance to P species of an Mn–Ti catalyst for selective catalytic reduction of NOx with NH3 by the modification with Mo. RSC Adv. 32, 1991219923 (2017).
37.Cai, S-X., Liu, J., Zha, K-W., Li, H.R., Shi, L-Y., and Zhang, D-S.: A general strategy for the in situ decoration of porous Mn–Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts. Nanoscale 9, 56485657 (2017).
38.Xu, Q., Su, R-G., Cao, L., Li, Y-Q., Yang, C-Y., Luo, Y., Street, J., Jiao, P-C., and Ca, L-L.: Facile preparation of high-performance Fe-doped Ce–Mn/TiO2 catalysts for the low-temperature selective catalytic reduction of NOx with NH3. RSC Adv. 7, 4878548792 (2017).
39.Chen, L-Q., Li, R., Li, Z-B., Yuan, F-L., Niu, X-Y., and Zhu, Y-J.: Effect of Ni doping in NixMn1−xTi10 (x = 0.1–0.5) on activity and SO2 resistance for NH3-SCR of NO studied with in situ DRIFTS. Catal. Sci. Technol. 7, 32433257 (2017).
40.Shu, Y., Sun, H., Quan, X., and Chen, S.: Enhancement of catalytic activity over the iron-modified Ce/TiO2 catalyst for selective catalytic reduction of NOx with ammonia. J. Phys. Chem. C 116, 2531925327 (2012).
41.Huang, X-Y., Xie, A-J., Zhou, X-M., Xia, J-W., Luo, S-P., Yao, C., and Li, X-Z.: Fabrication of γ-MnO2–Ce pillared montmorillonite for low temperature NH3-SCR. Z. Phys. Chem. 232, 17551769 (2018).
42.Huang, X-Y., Xie, A-J., Wu, J-Y., Xu, L-J., Luo, S-P., Xia, J-W., Yao, C., and Li, X-Z.: Cerium modified MnTiOx/attapulgite catalyst for low-temperature selective catalytic reduction of NOx with NH3. J. Mater. Res. 33, 35593569 (2018).
43.Guo, R-T., Wang, Q-S., Pan, W-G., and Zhen, W-L.: The poisoning effect of Na and K on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3: A comparative study. Appl. Surf. Sci. 317, 111116 (2014).
44.Kamata, H., Takahashi, K., and Odenbrand, C.U.: The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst. J. Mol. Catal. A: Chem. 139, 189198 (1999).
45.Jiang, B-Q., Deng, B-Y., Zhang, Z-Q., and Wu, Z-L.: Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe–Mn/Ti catalysts. J. Phys. Chem. C 118, 1486614875 (2014).
46.Roy, S., Viswanath, B., Hegde, M.S., and Madras, G.: Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2−δ (M = Cr, Mn, Fe, Co, Cu). J. Phys. Chem. C 112, 60026012 (2008).
47.Zheng, Y., Jensen, A-D., and Johnsson, J.E.: Deactivation of V2O5–WO3–TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Appl. Catal., B 60, 253264 (2005).
48.Kustov, A-L., Rasmussen, S-B., Fehrmann, R., and Simonsen, P.: Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases. Appl. Catal., B 76, 914 (2007).
49.Wang, W., Wang, F., Kang, Y., and Wang, A-Q.: Enhanced adsorptive removal of methylene blue from aqueous solution by alkali-activated palygorskite. Water, Air, Soil Pollut. 226, 913 (2015).

Keywords

Type Description Title
WORD
Supplementary materials

Tang et al. supplementary material
Tang et al. supplementary material 1

 Word (268 KB)
268 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed